Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral

With the current rate of progress in quantum computing technologies, systems with more than 50 qubits will soon become reality. Computing ideal quantum state amplitudes for circuits of such and larger sizes is a fundamental step to assess both the correctness, performance, and scaling behavior of quantum algorithms and the fidelities of quantum devices. However, resource requirements for such calculations on classical computers grow exponentially. We show that deferring tensor contractions can extend the boundaries of what can be computed on classical systems. To demonstrate this technique, we present results obtained from a calculation of the complete set of output amplitudes of a universal random circuit with depth 27 in a 2D lattice of $7 \times 7$ qubits, and an arbitrarily selected slice of $2^{37}$ amplitudes of a universal random circuit with depth 23 in a 2D lattice of $8 \times 7$ qubits. Combining our methodology with other decomposition approaches found in the literature, we show that we can simulate $7 \times 7$-qubit random circuits to arbitrary depth by leveraging secondary storage. These calculations were thought to be impossible due to resource requirements.

[1]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[2]  John F. Stanton,et al.  A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..

[3]  A. W. Joshi Matrices and tensors in physics , 1975 .

[4]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[5]  Amith R. Mamidala,et al.  MPI Collective Communications on The Blue Gene/P Supercomputer: Algorithms and Optimizations , 2009, 2009 17th IEEE Symposium on High Performance Interconnects.

[6]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[7]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[8]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[9]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[10]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[11]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[12]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[13]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[14]  Rupak Biswas,et al.  A flexible high-performance simulator for the verification and benchmarking of quantum circuits implemented on real hardware , 2018 .

[15]  Arie M. C. A. Koster,et al.  Contraction and Treewidth Lower Bounds , 2004, ESA.

[16]  R. A. Haring,et al.  Design of the IBM Blue Gene/Q compute chip , 2013 .

[17]  Norbert Schuch,et al.  Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.

[18]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[19]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[20]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[21]  Jack J. Dongarra,et al.  Beyond the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q , 2013, ISC.

[22]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[23]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[24]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[25]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[26]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[27]  L Frunzio,et al.  High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.

[28]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[29]  Elham Kashefi,et al.  Verification of Quantum Computation: An Overview of Existing Approaches , 2017, Theory of Computing Systems.

[30]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[31]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[32]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[33]  C. Porter,et al.  Fluctuations of Nuclear Reaction Widths , 1956 .

[34]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[35]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[36]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[37]  Amith R. Mamidala,et al.  Optimization of MPI collective operations on the IBM Blue Gene/Q supercomputer , 2014, Int. J. High Perform. Comput. Appl..

[38]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[39]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[41]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[42]  R. Bellman Dynamic programming. , 1957, Science.

[43]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[44]  R. Feynman Simulating physics with computers , 1999 .

[45]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[46]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[47]  E. Haber,et al.  Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .