An efficient sensor quantization algorithm for decentralized estimation fusion

In this paper, we consider the design problem of optimal sensor quantization rules (quantizers) and an optimal linear estimation fusion rule in bandwidth-constrained decentralized random signal estimation fusion systems. First, we derive a fixed-point-type necessary condition for both optimal sensor quantization rules and an optimal linear estimation fusion rule: a fixed point of an integral operation. Then, we can motivate an iterative Gauss-Seidel algorithm to simultaneously search for both optimal sensor quantization rules and an optimal linear estimation fusion rule without Gaussian assumptions on the joint probability density function (pdf) of the estimated parameter and observations. Moreover, we prove that the algorithm converges to a person-by-person optimal solution in the discretized scheme after a finite number of iterations. It is worth noting that the new method can be applied to vector quantization without any modification. Finally, several numerical examples demonstrate the efficiency of our method, and provide some reasonable and meaningful observations how the estimation performance is influenced by the observation noise power and numbers of sensors or quantization levels.

[1]  John N. Tsitsiklis,et al.  On the complexity of decentralized decision making and detection problems , 1985 .

[2]  Zhi-Quan Luo,et al.  Optimal linear decentralized estimation in a bandwidth constrained sensor network , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[3]  John A. Gubner,et al.  Distributed estimation and quantization , 1993, IEEE Trans. Inf. Theory.

[4]  P.K. Varshney,et al.  Optimal Data Fusion in Multiple Sensor Detection Systems , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Jun Fang,et al.  Hyperplane-Based Vector Quantization for Distributed Estimation in Wireless Sensor Networks , 2009, IEEE Transactions on Information Theory.

[6]  Vasileios Megalooikonomou,et al.  Quantizer design for distributed estimation with communication constraints and unknown observation statistics , 2000, IEEE Trans. Commun..

[7]  Amy R. Reibman,et al.  Design of quantizers for decentralized estimation systems , 1993, IEEE Trans. Commun..

[8]  Minyue Fu,et al.  State estimation for linear discrete-time systems using quantized measurements , 2009, Autom..

[9]  Rick S. Blum,et al.  Unexpected properties and optimum-distributed sensor detectors for dependent observation cases , 2000, IEEE Trans. Autom. Control..

[10]  Yunmin Zhu,et al.  Optimal sensor rules and unified fusion rules for multisensor multi-hypothesis network decision systems with channel errors , 2009, Autom..

[11]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[12]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[13]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function , 2006, IEEE Transactions on Signal Processing.

[14]  Le Yi Wang,et al.  Identification of Hammerstein Systems with Quantized Observations , 2010, SIAM J. Control. Optim..

[15]  Zhi-Quan Luo,et al.  Decentralized estimation in an inhomogeneous sensing environment , 2005, IEEE Transactions on Information Theory.

[16]  Ender Ayanoglu,et al.  On optimal quantization of noisy sources , 1990, IEEE Trans. Inf. Theory.

[17]  Jun Fang,et al.  Distributed Adaptive Quantization and Estimation for Wireless Sensor Networks , 2007, IEEE Signal Process. Lett..

[18]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[19]  Zhi-Quan Luo,et al.  Universal decentralized estimation in a bandwidth constrained sensor network , 2005, IEEE Transactions on Information Theory.

[20]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[21]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[22]  Zhi-Quan Luo,et al.  Universal decentralized detection in a bandwidth-constrained sensor network , 2005, IEEE Trans. Signal Process..

[23]  Robert R. Tenney,et al.  Detection with distributed sensors , 1980 .