Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

An emulsion-based serial crystallographic technology has been developed, in which single crystals are grown in nanolitre-sized droplets inside an X-ray semi-transparent microfluidic chip exploiting a negative feedback mechanism. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored in the chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals to solve the structure of glucose isomerase to 2.1 Å.

[1]  Wilhelm Pfleging,et al.  Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. , 2009, Lab on a chip.

[2]  Anton Barty,et al.  Room-temperature macromolecular serial crystallography using synchrotron radiation , 2014, IUCrJ.

[3]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[4]  Ken Dill,et al.  Growth rates of protein crystals. , 2012, Journal of the American Chemical Society.

[5]  Hiroyuki Nakamura,et al.  A method for generating single crystals that rely on internal fluid dynamics of microdroplets. , 2012, Chemical communications.

[6]  J. S. Johnson,et al.  Biocompatible surfactants for water-in-fluorocarbon emulsions. , 2008, Lab on a chip.

[7]  G. Entlicher,et al.  Studies on phytohemagglutinins. 8. Isoelectric point and multiplicity of purified concanavalin A. , 1971, Biochimica et biophysica acta.

[8]  James D. Litster,et al.  Modeling the crystallization of proteins and small organic molecules in nanoliter drops , 2009 .

[9]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[10]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[11]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[12]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[13]  Helen Song,et al.  Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers , 2003 .

[14]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[15]  Christian Holtze,et al.  High throughput production of single core double emulsions in a parallelized microfluidic device. , 2012, Lab on a chip.

[16]  Todd Thorsen,et al.  Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals. , 2007, Crystal growth & design.

[17]  Stephen R Quake,et al.  A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. , 2006, Journal of the American Chemical Society.

[18]  Joseph D Ng,et al.  Counterdiffusion methods applied to protein crystallization. , 2009, Progress in biophysics and molecular biology.

[19]  Elspeth F. Garman,et al.  Radiation damage in macromolecular crystallography: what is it and why should we care? , 2010, Acta crystallographica. Section D, Biological crystallography.

[20]  Sarah Köster,et al.  Microfluidic devices for X-ray studies on hydrated cells. , 2013, Lab on a chip.

[21]  K. Nagai,et al.  Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPs , 1999, Cell.

[22]  L R WETTER,et al.  Immunological studies on egg white proteins. IV. Immunochemical and physical studies of lysozyme. , 1951, The Journal of biological chemistry.

[23]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[24]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[25]  Nae Yoon Lee,et al.  A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. , 2010, Lab on a chip.

[26]  J. García-Ruiz,et al.  Counterdiffusion methods for macromolecular crystallization. , 2003, Methods in enzymology.

[27]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[28]  Nicholas C. S. Kee,et al.  A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems. , 2010, Crystal growth & design.

[29]  Stéphane Veesler,et al.  Heterogeneous Nucleation in Droplet-Based Nucleation Measurements , 2013 .

[30]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[31]  Hiroyuki Nakamura,et al.  Analysis of Kinetic Behavior of Protein Crystallization in Nanodroplets , 2011 .

[32]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[35]  Liang Li,et al.  Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins , 2006, Proceedings of the National Academy of Sciences.

[36]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[37]  Seth Fraden,et al.  Mapping and manipulating temperature-concentration phase diagrams using microfluidics. , 2010, Lab on a chip.

[38]  D. Weitz,et al.  Dropspots: a picoliter array in a microfluidic device. , 2009, Lab on a chip.

[39]  Jennifer L Wierman,et al.  Graphene as a protein crystal mounting material to reduce background scatter. , 2013, Journal of applied crystallography.

[40]  Ji-Xin Cheng,et al.  Selective detection of protein crystals by second harmonic microscopy. , 2008, Journal of the American Chemical Society.

[41]  J. García‐Ruiz,et al.  Nucleation of protein crystals. , 2003 .

[42]  K. A. Walsh,et al.  [4] Trypsinogens and trypsins of various species , 1970 .

[43]  Sudipto Guha,et al.  Fabrication of X-ray compatible microfluidic platforms for protein crystallization. , 2012, Sensors and actuators. B, Chemical.

[44]  H L Carrell,et al.  X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[46]  Alexander J Malkin,et al.  Growth and disorder of macromolecular crystals: insights from atomic force microscopy and X-ray diffraction studies. , 2004, Methods.

[47]  Garth J Simpson,et al.  Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. , 2010, Analytical chemistry.

[48]  P. Vekilov,et al.  Direct Determination of the Nucleation Rates of Protein Crystals , 1999 .

[49]  Matti Leisola,et al.  Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus , 2003 .