Complexity Analysis of Algorithms in Algebraic Computation
暂无分享,去创建一个
[1] Victor Y. Pan,et al. Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.
[2] V. Y. Pan. TR-2002003: Univariate Polynomial Root-Finding with a Lower Computational Precision and Higher Convergence Rates , 2002 .
[3] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[4] George E. Collins,et al. Quantifier elimination and the sign variation method for real root isolation , 1989, ISSAC '89.
[5] S. Smale,et al. Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .
[6] Steven Fortune,et al. Robustness Issues in Geometric Algorithms , 1996, WACG.
[7] Chee-Keng Yap,et al. Towards Exact Geometric Computation , 1997, Comput. Geom..
[8] A. Sluis. Upperbounds for roots of polynomials , 1970 .
[9] Jeremy Johnson,et al. Algorithms for polynomial real root isolation , 1992 .
[10] Prashant Batra,et al. Improvement of a convergence condition for the Durand-Kerner iteration , 1998 .
[11] Steven Fortune,et al. Polynomial root finding using iterated Eigenvalue computation , 2001, ISSAC '01.
[12] Jeremy R. Johnson,et al. High-performance implementations of the Descartes method , 2006, ISSAC '06.
[13] Immo O. Kerner,et al. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen , 1966 .
[14] W. Deren,et al. The theory of Smale's point estimation and its applications , 1995 .
[15] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, ESA.
[16] C. Yap,et al. Amortized Bound for Root Isolation via Sturm Sequences , 2007 .
[17] Xiaoshen Wang,et al. A Simple Proof of Descartes's Rule of Signs , 2004, Am. Math. Mon..
[18] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[19] P. Krishnaiah,et al. A Simple Proof of Descartes' Rule of Signs , 1963 .
[20] R. Baker Kearfott,et al. Interval Newton/generalized bisection when there are singularities near roots , 1991 .
[21] Ioannis Z. Emiris,et al. Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.
[22] Pengyuan Chen. Approximate zeros of quadratically convergent algorithms , 1994 .
[23] D. P. Mitchell. Robust ray intersection with interval arithmetic , 1990 .
[24] Arnold Schönhage,et al. The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .
[25] Kurt Mehlhorn,et al. A Generalized and improved constructive separation bound for real algebraic expressions , 2000 .
[26] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[27] Myong-Hi Kim,et al. Polynomial Root-Finding Algorithms and Branched Covers , 1994, SIAM J. Comput..
[28] I. Emiris,et al. Real Algebraic Numbers: Complexity Analysis and Experimentations , 2008 .
[29] Freeman J. Dyson,et al. The approximation to algebraic numbers by rationals , 1947 .
[30] Ansi Ieee,et al. IEEE Standard for Binary Floating Point Arithmetic , 1985 .
[31] Peter Duren,et al. Coefficients of univalent functions , 1977 .
[32] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[33] M. Mignotte,et al. Polynomials: An Algorithmic Approach , 1999 .
[34] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[35] M. SIAMJ.,et al. NEWTON’S METHOD IN FLOATING POINT ARITHMETIC AND ITERATIVE REFINEMENT OF GENERALIZED EIGENVALUE PROBLEMS∗ , 1999 .
[36] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[37] K. Mahler. An inequality for the discriminant of a polynomial. , 1964 .
[38] S. Smale,et al. On the complexity of path-following newton algorithms for solving systems of polynomial equations with integer coefficients , 1993 .
[39] Victor Y. Pan,et al. Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..
[40] E. Kreyszig. Introductory Functional Analysis With Applications , 1978 .
[41] Arnold Schönhage. Storage Modification Machines , 1980, SIAM J. Comput..
[42] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[43] Oliver Aberth,et al. Iteration methods for finding all zeros of a polynomial simultaneously , 1973 .
[44] Christoph M. Hoffmann,et al. The problems of accuracy and robustness in geometric computation , 1989, Computer.
[45] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[46] Ľ.,et al. Polynomial Zero Finders Based on Szeg } O Polynomials , 2022 .
[47] Fabrice Rouillier,et al. Bernstein's basis and real root isolation , 2004 .
[48] Sylvain Pion,et al. Constructive root bound method for k-aray rational input numbers , 2003 .
[49] Alkiviadis G. Akritas,et al. Elements of Computer Algebra with Applications , 1989 .
[50] Myong-Hi Kim. On approximate zeros and rootfinding algorithms for a complex polynomial , 1988 .
[51] Chee Yap,et al. Towards robust geometric computation (invited white paper) , 2004 .
[52] Alkiviadis G. Akritas,et al. There is no “Uspensky's method.” , 1986, SYMSAC '86.
[53] B. Mourrain,et al. The Bernstein Basis and Real Root Isolation , 2007 .
[54] G. Alefeld,et al. Introduction to Interval Computation , 1983 .
[55] Wilhelm Werner,et al. On the simultaneous determination of polynomial roots , 1982 .
[56] W. Burnside,et al. Theory of equations , 1886 .
[57] S. Smale,et al. Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .
[58] A. Ostrowski. Solution of equations in Euclidean and Banach spaces , 1973 .
[59] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[60] Doru Stefanescu,et al. New Bounds for Positive Roots of Polynomials , 2005, J. Univers. Comput. Sci..
[61] V. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .
[62] Christopher J. Van Wyk,et al. Efficient exact arithmetic for computational geometry , 1993, SCG '93.
[63] L. Kantorovich,et al. Functional analysis and applied mathematics , 1963 .
[64] Stefan Schirra,et al. Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.
[65] Giuseppe Fiorentino,et al. Numerical Computation of Polynomial Roots Using MPSolve Version 2 . 2 , 2001 .
[66] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[67] Tetsuro Yamamoto,et al. A unified derivation of several error bounds for Newton's process , 1985 .
[68] S. Smale,et al. Computational complexity: on the geometry of polynomials and a theory of cost. I , 1985 .
[69] C. Jacobi. Observatiunculae ad theoriam aequationum pertinentes. , 1835 .
[70] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.
[71] Hoon Hong,et al. Bounds for Absolute Positiveness of Multivariate Polynomials , 1998, J. Symb. Comput..
[72] Chee-Keng Yap,et al. A new constructive root bound for algebraic expressions , 2001, SODA '01.
[73] Chee-Keng Yap,et al. Almost tight recursion tree bounds for the Descartes method , 2006, ISSAC '06.
[74] L. Zoretti. Sur la résolution des équations numériques , 1909 .
[75] Richard E. Ewing,et al. "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .
[76] Stephen Smale,et al. Computational Complexity: On the Geometry of Polynomials and a Theory of Cost: II , 1986, SIAM J. Comput..
[77] Melvin R. Spencer. Polynomial real root finding in Bernstein form , 1994 .
[78] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[79] Bud Mishra,et al. Counting Real Zeros , 1991 .
[80] Carsten Carstensen,et al. Weierstrass formula and zero-finding methods , 1995 .
[81] A. Edelman,et al. Polynomial roots from companion matrix eigenvalues , 1995 .
[82] S. Smale. Newton’s Method Estimates from Data at One Point , 1986 .
[83] James H. Curry,et al. On zero finding methods of higher order from data at one point , 1989, J. Complex..
[84] J. McNamee. A bibliography on roots of polynomials , 1993 .
[85] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[86] C. A. Neff,et al. An O(n^1+epsilon log b) Algorithm for the Complex Roots Problem , 1994, FOCS 1994.
[87] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[88] Li Chen,et al. CORE Library Tutorial: A Library for Robust Geometric Computation , 1999 .
[89] R. Riesenfeld,et al. Bounds on a polynomial , 1981 .
[90] Lothar Reichel,et al. Polynomial zerofinders based on Szego polynomials , 2001 .
[91] V. Pan,et al. Improved initialization of the accelerated and robust QR-like polynomial root-finding. , 2004 .
[92] 関川 浩. Using Interval Computation with the Mahler Measure for Zero Determination of Algebraic Numbers , 1998 .
[93] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[94] J B Kiostelikis,et al. Bounds for positive roots of polynomials , 1986 .
[95] Victor Y. Pan,et al. Root-Finding with Eigen-Solving , 2007 .
[96] K. Hensel. Journal für die reine und angewandte Mathematik , 1892 .
[97] Maurice Mignotte,et al. On the distance between the roots of a polynomial , 1995, Applicable Algebra in Engineering, Communication and Computing.
[98] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[99] Daniel Reischert. Asymptotically fast computation of subresultants , 1997, ISSAC.
[100] Alkiviadis G. Akritas. A Correction on a Theorem By Uspensky , 1978 .
[101] Miodrag S. Petkovic,et al. Safe convergence of simultaneous methods for polynomial zeros , 2004, Numerical Algorithms.
[102] R. Tapia,et al. Optimal Error Bounds for the Newton–Kantorovich Theorem , 1974 .
[103] A. Ostrowski. Note on Vincent's Theorem , 1950 .
[104] S. Basu,et al. Algorithms in real algebraic geometry , 2003 .
[105] Michel Coste,et al. Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-Algebraic Sets , 1988, J. Symb. Comput..
[106] Chee-Keng Yap,et al. Robust Approximate Zeros , 2005, ESA.
[107] John J. Sopka,et al. Introductory Functional Analysis with Applications (Erwin Kreyszig) , 1979 .
[108] J. Hubbard,et al. How to find all roots of complex polynomials by Newton’s method , 2001 .
[109] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[110] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[111] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[112] S. Smale. The fundamental theorem of algebra and complexity theory , 1981 .
[113] Jeremy R. Johnson,et al. Architecture-aware classical Taylor shift by 1 , 2005, ISSAC.
[114] T. A. Brown,et al. Theory of Equations. , 1950, The Mathematical Gazette.
[115] Herbert S. Wilf. A Global Bisection Algorithm for Computing the Zeros of Polynomials in the Complex Plane , 1978, JACM.
[116] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[117] A. Ostrowski. Solution of equations and systems of equations , 1967 .
[118] Michael Ben-Or,et al. Simple algorithms for approximating all roots of a polynomial with real roots , 1990, J. Complex..
[119] J. Liouville. Mémoire sur les transcendantes elliptiques de 1$^{re}$ et de 2$^{me}$ espèce, considérées comme fonctions de leur module. , 1840 .
[120] R. B. Kearfott,et al. Abstract generalized bisection and a cost bound , 1987 .
[121] Alkiviadis G. Akritas. Reflections on a Pair of Theorems by Budan and Fourier , 1982 .
[122] C. A. Neff,et al. An O(nls'log b) Algorithm for the Complex Roots Problem , 1994 .
[123] Tetsuro Yamamoto,et al. Error Bounds for Newton’s Method Under the Kantorovich Assumptions , 1986 .
[124] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[125] K. F. Roth,et al. Rational approximations to algebraic numbers , 1955 .
[126] Thomas Lickteig,et al. Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..
[127] Florian Cajori,et al. Historical Note on the Newton-Raphson Method of Approximation , 1911 .
[128] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[129] Stephen Smale,et al. Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..
[130] Kurt Mehlhorn,et al. New bounds for the Descartes method , 2005, SIGS.
[131] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[132] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[133] J Erˆome,et al. A CONDITION NUMBER THEOREM FOR UNDERDETERMINED POLYNOMIAL SYSTEMS , 2000 .
[134] Rémi Vaillancourt,et al. A composite polynomial zerofinding matrix algorithm , 1995 .
[135] Axel Thue. Über Annäherungswerte algebraischer Zahlen. , 1909 .
[136] Bahman Kalantari,et al. An infinite family of bounds on zeros of analytic functions and relationship to Smale's bound , 2004, Math. Comput..
[137] Tjalling J. Ypma,et al. Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..
[138] Maurice Mignotte,et al. Some inequalities about univariate polynomials , 1981, SYMSAC '81.
[139] L. Trefethen,et al. Numerical linear algebra , 1997 .
[140] Paul Turán,et al. On a new method of analysis and its applications , 1984 .
[141] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[142] Susanne Schmitt,et al. The Diamond Operator - Implementation of Exact Real Algebraic Numbers , 2005, CASC.
[143] S. Basu,et al. Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .
[144] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.