To Blank or Not to Blank? A Comparison of the Effects of Disclosure Limitation Methods on Nonlinear Regression Estimates

Statistical disclosure limitation is widely used by data collecting institutions to provide safe individual data. However, the choice of the disclosure limitation method severely affects the quality of the data and limit their use for empirical research. In particular, estimators for nonlinear models based on data which are masked by standard disclosure limitation techniques such as blanking or noise addition lead to inconsistent parameter estimates. This paper investigates to what extent appropriate econometric techniques can obtain parameter estimates of the true data generating process, if the data are masked by noise addition or blanking. Comparing three different estimators - calibration method, the SIMEX method and a semiparametric sample selectivity estimator - we produce Monte-Carlo evidence on how the reduction of data quality can be minimized by masking.

[1]  R. Prentice Covariate measurement errors and parameter estimation in a failure time regression model , 1982 .

[2]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[3]  Lung-fei Lee,et al.  Estimation of Linear and Nonlinear Errors-in-Variables Models Using Validation Data , 1995 .

[4]  A. Satorra,et al.  Measurement Error Models , 1988 .

[5]  E. Tamer,et al.  A simple estimator for nonlinear error in variable models , 2003 .

[6]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[7]  Yasuo Amemiya,et al.  Instrumental variable estimator for the nonlinear errors-in-variables model , 1985 .

[8]  J. Powell,et al.  Semiparametric Estimation Of Bivariate Latent Variable Models , 1987 .

[9]  Raymond J. Carroll,et al.  Approximate Quasi-likelihood Estimation in Models with Surrogate Predictors , 1990 .

[10]  Cheng Hsiao,et al.  CONSISTENT ESTIMATION FOR SOME NONLINEAR ERRORS-IN- VARIABLES MODELS , 1989 .

[11]  B Rosner,et al.  Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. , 2006, Statistics in medicine.

[12]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[13]  Jerry A. Hausman,et al.  Nonlinear errors in variables Estimation of some Engel curves , 1995 .

[14]  Donald W. K. Andrews,et al.  Semiparametric Estimation of the Intercept of a Sample Selection Model , 1998 .

[15]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[16]  Michael Lechner,et al.  Seminonparametric Estimation of Binary-Choice Models With an Application to Labor-Force Participation , 1993 .