Training-Based Object Recognition in Cluttered 3D Point Clouds

Recognition of three dimensional (3D) objects is a challenging problem, especially in cluttered or occluded scenes. Many existing methods focus on a specific type of object or scene, or require prior segmentation. We describe a robust and efficient general purpose 3D object recognition method that combines machine learning procedures with 3D local features, without a requirement for a priori object segmentation. Experiments validate our method on various object types from engineering and street data scans.

[1]  Masayuki Nakajima,et al.  A boosting approach to content-based 3D model retrieval , 2007, GRAPHITE '07.

[2]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[5]  Horst Bischof,et al.  3D Segmentation by Maximally Stable Volumes (MSVs) , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[6]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[7]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Konrad Schindler,et al.  IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS , 2012, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[9]  Kostas Daniilidis,et al.  Object Detection from Large-Scale 3D Datasets Using Bottom-Up and Top-Down Descriptors , 2008, ECCV.

[10]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[11]  Michael Himmelsbach,et al.  LIDAR-based 3D Object Perception , 2008 .

[12]  Najla Megherbi Bouallagu,et al.  Object Recognition using 3D SIFT in Complex CT Volumes , 2010, BMVC.

[13]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[15]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[16]  Martial Hebert,et al.  Natural terrain classification using three‐dimensional ladar data for ground robot mobility , 2006, J. Field Robotics.

[17]  Roberto Cipolla,et al.  An Evaluation of Volumetric Interest Points , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[18]  Vladimir G. Kim,et al.  Shape-based recognition of 3D point clouds in urban environments , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Ernesto Tapia,et al.  A note on the computation of high-dimensional integral images , 2011, Pattern Recognit. Lett..

[20]  Karthik Ramani,et al.  Developing an engineering shape benchmark for CAD models , 2006, Comput. Aided Des..

[21]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[23]  Reinhard Klein,et al.  Learning Distinctive Local Object Characteristics for 3D Shape Retrieval , 2008, VMV.

[24]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[25]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[26]  Wolfram Burgard,et al.  Unsupervised discovery of object classes from range data using latent Dirichlet allocation , 2009, Robotics: Science and Systems.

[27]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[28]  Wolfram Burgard,et al.  Unsupervised learning of compact 3D models based on the detection of recurrent structures , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.