Online Learning for Human-Robot Interaction

This paper presents a novel approach for incremental subspace learning based on an online version of the non-parametric discriminant analysis (NDA). For many real-world applications (like the study of visual processes, for instance) there is impossible to know beforehand the number of total classes or the exact number of instances per class. This motivated us to propose a new algorithm, in which new samples can be added asynchronously, at different time stamps, as soon as they become available. The proposed technique for NDA-eigenspace representation has been applied to the problem of online face recognition for human-robot interaction scenario.

[1]  Mignon Park,et al.  A New Facial Features and Face Detection Method for Human-Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[3]  David Masip,et al.  Boosted Linear Projections for Discriminant Analysis , 2004 .

[4]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[5]  Javier Ruiz-del-Solar,et al.  Face analysis for human computer interaction applications , 2007, VISAPP.

[6]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[7]  Sung-Bae Cho,et al.  A Hierarchical Bayesian Network for Mixed-Initiative Human-Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[8]  Ales Leonardis,et al.  Incremental PCA for on-line visual learning and recognition , 2002, Object recognition supported by user interaction for service robots.

[9]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[10]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Shaoning Pang,et al.  Chunk Incremental LDA Computing on Data Streams , 2005, ISNN.

[12]  Dahua Lin,et al.  Nonparametric subspace analysis for face recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Horst Bischof,et al.  Why to Combine Reconstructive and Discriminative Information for Incremental Subspace Learning , 2006 .

[14]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[15]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[17]  Frédéric Lerasle,et al.  Data Fusion for Visual Tracking dedicated to Human-Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.