Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells

Using Cu2ZnSnS4 (CZTS) nanocrystal-based ink (via a solvothermal route) and roll-to-roll printing, CZTS films are prepared on a Mo-coated Al foil, and then flexible solar cells with a structure of Al foil/Mo/CZTS/ZnS/i-ZnO/ITO/Al–Ni and a power conversion efficiency of 1.94% are constructed, in which all the materials are low-cost and environmentally friendly.

[1]  Liang Shi,et al.  Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. , 2011, Journal of the American Chemical Society.

[2]  Wenhui Zhou,et al.  Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method , 2011 .

[3]  Meng Cao,et al.  A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles , 2011 .

[4]  Rakesh Agrawal,et al.  Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. , 2010, Journal of the American Chemical Society.

[5]  Liang Shi,et al.  Fabrication of ordered single-crystalline CuInSe2 nanowire arrays , 2010 .

[6]  Liang Shi,et al.  Ordered arrays of shape tunable CuInS(2) nanostructures, from nanotubes to nano test tubes and nanowires. , 2010, Nanoscale.

[7]  Yu‐Guo Guo,et al.  Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high-performance organic-inorganic hybrid photodetectors. , 2010, Journal of the American Chemical Society.

[8]  Zhaojun Lin,et al.  Band-gap tunable (Cu2Sn)(x/3)Zn(1-x)S nanoparticles for solar cells. , 2010, Chemical communications.

[9]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[10]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[11]  Nelson E. Coates,et al.  Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. , 2010, Journal of the American Chemical Society.

[12]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[13]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[14]  B. Parkinson,et al.  Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. , 2009, Journal of the American Chemical Society.

[15]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[16]  Rakesh Agrawal,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[17]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[18]  P. Escribano,et al.  Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .

[19]  Wei Liu,et al.  A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .

[20]  N. Ming,et al.  POLYVINYLPYRROLIDONE-DIRECTED CRYSTALLIZATION OF ZNO WITH TUNABLE MORPHOLOGY AND BANDGAP , 2007 .

[21]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[22]  E. E. van Dyk,et al.  Analysis of the effect of parasitic resistances on the performance of photovoltaic modules , 2004 .

[23]  R. Miles,et al.  Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials , 2002 .

[24]  M. Gu,et al.  Preparation, structure and properties of TiO2–PVP hybrid films , 2000 .