Computing minimum distortion embeddings into a path for bipartite permutation graphs and threshold graphs

The problem of computing minimum distortion embeddings of a given graph into a line (path) was introduced in 2004 and has quickly attracted significant attention with subsequent results appearing at recent stoc and soda conferences. So far, all such results concern approximation algorithms or exponential-time exact algorithms. We give the first polynomial-time algorithms for computing minimum distortion embeddings of graphs into a path when the input graphs belong to specific graph classes. In particular, we solve this problem in polynomial time for bipartite permutation graphs and threshold graphs. For both graph classes, the distortion can be arbitrarily large. The graphs that we consider are unweighted.

[1]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[2]  Piotr Indyk,et al.  Low-distortion embeddings of general metrics into the line , 2005, STOC '05.

[3]  Michael R. Fellows,et al.  Distortion is Fixed Parameter Tractable , 2009, TOCT.

[4]  Peter C. Fishburn,et al.  Linear Discrepancy and Bandwidth , 2001, Order.

[5]  G. Khosrovshahi,et al.  Computing the bandwidth of interval graphs , 1990 .

[6]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[7]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[8]  Marek Karpinski,et al.  On Approximation Intractability of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..

[9]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[10]  Alan P. Sprague An 0(n log n) Algorithm for Bandwidth of Interval Graphs , 1994, SIAM J. Discret. Math..

[11]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[12]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[13]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[14]  Mihai Badoiu,et al.  Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.

[15]  Christos H. Papadimitriou,et al.  The complexity of low-distortion embeddings between point sets , 2005, SODA '05.

[16]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[17]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[18]  N. Mahadev,et al.  Threshold graphs and related topics , 1995 .

[19]  Yuval Rabani,et al.  Low distortion maps between point sets , 2004, STOC '04.

[20]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[21]  Pinar Heggernes,et al.  Hardness and approximation of minimum distortion embeddings , 2010, Inf. Process. Lett..

[22]  Daniel J. Kleitman,et al.  Computing the Bandwidth of Interval Graphs , 1990, SIAM Journal on Discrete Mathematics.

[23]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[25]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[26]  Dieter Kratsch,et al.  Bandwidth of Bipartite Permutation Graphs in Polynomial Time , 2008, LATIN.

[27]  Piotr Indyk,et al.  Approximation algorithms for embedding general metrics into trees , 2007, SODA '07.

[28]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.