Disentangling Interpretable Generative Parameters of Random and Real-World Graphs

While a wide range of interpretable generative procedures for graphs exist, matching observed graph topologies with such procedures and choices for its parameters remains an open problem. Devising generative models that closely reproduce real-world graphs requires domain knowledge and time-consuming simulation. While existing deep learning approaches rely on less manual modelling, they offer little interpretability. This work approaches graph generation (decoding) as the inverse of graph compression (encoding). We show that in a disentanglement-focused deep autoencoding framework, specifically Beta-Variational Autoencoders (Beta-VAE), choices of generative procedures and their parameters arise naturally in the latent space. Our model is capable of learning disentangled, interpretable latent variables that represent the generative parameters of procedurally generated random graphs and real-world graphs. The degree of disentanglement is quantitatively measured using the Mutual Information Gap (MIG). When training our Beta-VAE model on ER random graphs, its latent variables have a near one-to-one mapping to the ER random graph parameters n and p. We deploy the model to analyse the correlation between graph topology and node attributes measuring their mutual dependence without handpicking topological properties.

[1]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[2]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[3]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[4]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[5]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[6]  Stephan Günnemann,et al.  NetGAN: Generating Graphs via Random Walks , 2018, ICML.

[7]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[8]  Steven Skiena,et al.  Walklets: Multiscale Graph Embeddings for Interpretable Network Classification , 2016, ArXiv.

[9]  Emmanuel Noutahi,et al.  Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling , 2019, ArXiv.

[10]  Andriy Mnih,et al.  Disentangling by Factorising , 2018, ICML.

[11]  Yuchun Guo,et al.  BOSAM: A topology visualisation tool for large-scale complex networks , 2006 .

[12]  Yang Song,et al.  An Overview of Microsoft Academic Service (MAS) and Applications , 2015, WWW.

[13]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[14]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[15]  Wei Lu,et al.  Deep Neural Networks for Learning Graph Representations , 2016, AAAI.

[16]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[17]  Paul Erdös,et al.  On random graphs, I , 1959 .

[18]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[19]  Tanya Y. Berger-Wolf,et al.  Network Structure Inference, A Survey , 2016, ACM Comput. Surv..

[20]  Wenwu Zhu,et al.  Disentangled Graph Convolutional Networks , 2019, ICML.

[21]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[22]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Sebastian Nowozin,et al.  Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations , 2019, AISTATS.

[24]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[25]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[26]  Shi Zhou,et al.  Accurately modeling the Internet topology , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[28]  Alessandro Vespignani,et al.  Global protein function prediction from protein-protein interaction networks , 2003, Nature Biotechnology.

[29]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[30]  Wenwu Zhu,et al.  Structural Deep Network Embedding , 2016, KDD.

[31]  Saket Navlakha,et al.  Learning the Structural Vocabulary of a Network , 2017, Neural Computation.

[32]  Daniel D. Johnson,et al.  Learning Graphical State Transitions , 2016, ICLR.

[33]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[34]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[35]  Filippo Menczer,et al.  Evolution of document networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[37]  Jure Leskovec,et al.  GraphRNN: A Deep Generative Model for Graphs , 2018, ICML 2018.

[38]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.