Ensemble Learning through Diversity Management: Theory, Algorithms, and Applications

[1]  Oleksandr Makeyev,et al.  Neural network with ensembles , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[2]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[3]  William Nick Street,et al.  Ensemble Pruning Via Semi-definite Programming , 2006, J. Mach. Learn. Res..

[4]  Xin Yao,et al.  Evolving hybrid ensembles of learning machines for better generalisation , 2006, Neurocomputing.

[5]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[6]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[7]  Xin Yao,et al.  A constructive algorithm for training cooperative neural network ensembles , 2003, IEEE Trans. Neural Networks.

[8]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[9]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[10]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[11]  Padraig Cunningham,et al.  Diversity versus Quality in Classification Ensembles Based on Feature Selection , 2000, ECML.

[12]  Naonori Ueda,et al.  Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[14]  Xin Yao,et al.  Ensemble learning via negative correlation , 1999, Neural Networks.

[15]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[16]  John G. Carney,et al.  Tuning Diversity in Bagged Neural Network Ensembles , 1999 .

[17]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[19]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[20]  Derek Partridge,et al.  Software Diversity: Practical Statistics for Its Measurement and Exploitation | Draft Currently under Revision , 1996 .

[21]  David W. Opitz,et al.  Actively Searching for an E(cid:11)ective Neural-Network Ensemble , 1996 .

[22]  Ron Kohavi,et al.  Bias Plus Variance Decomposition for Zero-One Loss Functions , 1996, ICML.

[23]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[25]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[26]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[27]  G. Yule,et al.  On the association of attributes in statistics, with examples from the material of the childhood society, &c , 1900, Proceedings of the Royal Society of London.

[28]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.