A 2-Opt based differential evolution for global optimization

Differential evolution (DE) is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problems. However, DE has shown some weaknesses, especially the long computational times because of its stochastic nature. This drawback sometimes limits its application to optimization problems. Therefore we propose the 2-Opt based DE (2-Opt DE) which is inspired by 2-Opt algorithms to accelerate DE. The novel mutation schemes of 2-Opt DE, DE/2-Opt/1 and DE/2-Opt/2 are substituted for mutation schemes of the original DE namely DE/rand/1 and DE/rand/2. We also provide a comparison of 2-Opt DE to DE. A comprehensive set of 19 benchmark functions is employed for experimental verification. The experimental results confirm that 2-Opt DE outperforms the original DE in terms of solution accuracy and convergence speed.

[1]  Klaus Meer,et al.  Simulated Annealing versus Metropolis for a TSP instance , 2007, Inf. Process. Lett..

[2]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[3]  Anna Kucerová,et al.  Improvements of real coded genetic algorithms based on differential operators preventing premature convergence , 2004, ArXiv.

[4]  Bilal Alatas,et al.  MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules , 2008, Appl. Soft Comput..

[5]  Ivanoe De Falco,et al.  Differential Evolution as a viable tool for satellite image registration , 2008, Appl. Soft Comput..

[6]  Wenyin Gong,et al.  Enhancing the performance of differential evolution using orthogonal design method , 2008, Appl. Math. Comput..

[7]  Amin Nobakhti,et al.  A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier , 2008, Appl. Soft Comput..

[8]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[9]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[10]  L. G. van Willigenburg,et al.  Efficient Differential Evolution algorithms for multimodal optimal control problems , 2003, Appl. Soft Comput..

[11]  Funda Samanlioglu,et al.  A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem , 2008, Comput. Ind. Eng..

[12]  M. M. Ali,et al.  A local exploration-based differential evolution algorithm for constrained global optimization , 2009, Appl. Math. Comput..

[13]  Leandro dos Santos Coelho,et al.  B-spline neural network design using improved differential evolution for identification of an experimental nonlinear process , 2008, Appl. Soft Comput..

[14]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Xuesong Wang,et al.  On the use of differential evolution for forward kinematics of parallel manipulators , 2008, Appl. Math. Comput..

[16]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[17]  Aybars Uur,et al.  Path planning on a cuboid using genetic algorithms , 2008, Inf. Sci..

[18]  Amit Konar,et al.  Improved differential evolution algorithms for handling noisy optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[19]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[20]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[21]  Richard Lai,et al.  Designing a hierarchical fuzzy logic controller using the differential evolution approach , 2007, Appl. Soft Comput..

[22]  Weiyi Qian,et al.  Adaptive differential evolution algorithm for multiobjective optimization problems , 2008, Appl. Math. Comput..

[23]  K. S. Swarup,et al.  Differential evolution approach for optimal reactive power dispatch , 2008, Appl. Soft Comput..

[24]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[25]  G. Croes A Method for Solving Traveling-Salesman Problems , 1958 .

[26]  Jiang-She Zhang,et al.  Global optimization by an improved differential evolutionary algorithm , 2007, Appl. Math. Comput..

[27]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[28]  George D. Magoulas,et al.  Neural network-based colonoscopic diagnosis using on-line learning and differential evolution , 2004, Appl. Soft Comput..

[29]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..