Biembeddings of Metacyclic Groups and Triangulations of Orientable Surfaces by Complete Graphs

For each integer $n\ge 3$, $n\ne 4$, for each odd integer $m\ge 3$, and for any $\lambda\in\Bbb Z_n$ of (multiplicative) order $m'$ where $m'\mid m$, we construct a biembedding of Latin squares in which one of the squares is the Cayley table of the metacyclic group $\mathbb{Z}_m\ltimes_{\lambda}\mathbb{Z}_n$. This extends the spectrum of Latin squares known to be biembeddable. The best existing lower bounds for the number of triangular embeddings of a complete graph $K_z$ in an orientable surface are of the form $z^{z^2(a-o(1))}$ for suitable positive constants $a$ and for restricted infinite classes of $z$. Using embeddings of $\mathbb{Z}_3\ltimes_{\lambda}\mathbb{Z}_n$, we extend this lower bound to a substantially larger class of values of $z$.

[1]  Vladimir P. Korzhik,et al.  Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.

[2]  Mike J. Grannell,et al.  Recursive constructions for triangulations , 2002 .

[3]  G. Hardy The Theory of Numbers , 1922, Nature.

[4]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[5]  Mike J. Grannell,et al.  Dihedral Biembeddings and Triangulations by Complete and Complete Tripartite Graphs , 2013, Graphs Comb..

[6]  Vladimir P. Korzhik Exponentially many nonisomorphic orientable triangular embeddings of K12s , 2008, Discret. Math..

[7]  G. Ringel Map Color Theorem , 1974 .

[8]  Mike J. Grannell,et al.  A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.

[9]  Vladimir P. Korzhik,et al.  On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.

[10]  Vladimir P. Korzhik,et al.  Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..

[11]  Mike J. Grannell,et al.  Biembeddings of Abelian groups , 2009 .

[12]  Mike J. Grannell,et al.  On the number of triangular embeddings of complete graphs and complete tripartite graphs , 2012, J. Graph Theory.

[13]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[14]  Mike J. Grannell,et al.  Designs and topology , 2007 .

[15]  T. Apostol Introduction to analytic number theory , 1976 .

[16]  Mike J. Grannell,et al.  Biembedding Abelian groups with mates having transversals , 2012 .

[17]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[18]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.

[19]  Mike J. Grannell,et al.  On Biembeddings of Latin Squares , 2009, Electron. J. Comb..

[20]  Mike J. Grannell,et al.  BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.