Interpolation on Sparse Grids and Nikol'skijbesov Spaces of Dominating Mixed Smoothness Running Title: Interpolation on Sparse Grids and Nikol'skijjbesov Spaces

We investigate the order of convergence of periodic interpolation on sparse grids (blending interpolation) in the framework of Nikol'skij Besov spaces of dominating mixed smoothness. The main ingredients are a uni ed approach to error estimates in univariate Nikol'skij Besov spaces and the tensor product characterization of the bivariate Nikol'skij Besov spaces of dominating mixed smoothness.

[1]  S. B. Stechkin Approximation of periodic functions , 1974 .

[2]  S. Nikol,et al.  Approximation of Functions of Several Variables and Imbedding Theorems , 1975 .

[3]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[4]  H. Triebel Theory Of Function Spaces , 1983 .

[5]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[6]  H. Schmeißer,et al.  An unconditional basis in periodic spaces with dominating mixed smoothness properties , 1987 .

[7]  F. Delvos,et al.  A discrete Fourier transform scheme for Boolean sums of trigonometric operators , 1989 .

[8]  Martin D. Buhmann,et al.  Boolean methods in interpolation and approximation , 1990, Acta Applicandae Mathematicae.

[9]  R. Jia,et al.  Approximation by multiinteger translates of functions having global support , 1993 .

[10]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[11]  Gisela Brumme Error estimates for periodic interpolation by translates , 1994 .

[12]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[13]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[14]  Frauke Sprengel,et al.  Some Error Estimates for Periodic Interpolation on Full and Sparse Grids , 1997 .

[15]  Ronald R. Coifman,et al.  Signal and image representation in combined spaces , 1998 .

[16]  Frauke Sprengel,et al.  A Tool for Approximation in Bivariate Periodic Sobolev Spaces X2. Periodic Sobolev Spaces , 1998 .

[17]  Annie A. M. Cuyt,et al.  Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.