Content markup language design principles

The research goal of this dissertation is to point the way towards a better understanding for the hidden complexities of knowledge communication and content markup, with a view to cleaner, more principled designs. The following four specific contributions are shown to be particularly useful tools in the quest for understanding and improving the design of content markup languages: Linguistics parallel. Since human language is a high-quality existing solution to a generalization of the problem that knowledge communication languages aim to solve, the study of the “engineering solutions” of human language provide a guideline to engineering solutions for content markup language design. Language layers and components. We propose a general architecture for knowledge communication languages, noting that human language appears to be structured in a deeply related parallel fashion. Compositionality. The Compositionality Principle is a fundamental research paradigm in the study of the semantics of human language. We show how this principle, which we have introduced into our research field from linguistics, has already had a notable effect on improving content markup languages. Categorial semantics. A categorial semantics of a knowledge communication language is another fundamental tool, as linguists who study the semantics of human language have discovered. In particular, we introduce the concept of categorial types into the discussion, and propose a complete categorial type system for one particular language, namely OpenMath. This dissertation is thus concerned with the architecture of such languages. The linguistics parallel posits a parallel between human language and content markup architectures based on a realization that the problems they solve are deeply related, which leads us to propose a general architecture of layers and components for content markup and knowledge communication languages. The compositionality principle provides an architectural guideline for the design of the two core layers of such languages, and writing a categorial type system for a compositional content markup language turns out to be an immensely useful tool for designing such a language. Application of this approach to several existing language proposals provides evidence for its practical usefulness, by showing how failure to adhere to these design principles produces concrete bugs in their specifications.

[1]  AbbottJohn,et al.  A report on OpenMath , 1996 .

[2]  Andreas Strotmann,et al.  Understanding and improving content markup for the Web: from the perspectives of formal linguistics, algebraic logic, and cognitive science , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[3]  Erich Kaltofen,et al.  Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..

[4]  Olaf Bachmann MPCR: an efficient and flexible chains of recurrences server , 1997, SIGS.

[5]  Andreas Strotmann,et al.  Effective computations with distributed knowledge: the issue of compositionality and ontologies , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[6]  Dietrich Stauffer,et al.  Evolution, money, war, and computers : non-traditional applications of computational statistical physics , 1999 .

[7]  Norbert Kajler,et al.  Building a Computer Algebra Environment by Composition of Collaborative Tools , 1992, DISCO.

[8]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[9]  Paul S. Wang,et al.  Pluggability Issues in the Multi Protocol , 1996, DISCO.

[10]  Robert S. Sutor TEX on the Web via IBM techexplorer , 1998 .

[11]  Eberhard Schrüfer,et al.  A Computer Algebra System Based on Ordersorted Algebra , 1995, J. Symb. Comput..

[12]  Michael Kohlhase OMDoc: an infrastructure for OpenMath content dictionary information , 2000, SIGS.

[13]  Johan Bos,et al.  Automated Reasoning for Computational , 1999 .

[14]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[15]  Gregory R. Olsen,et al.  An Ontology for Engineering Mathematics , 1994, KR.

[16]  John Harrison,et al.  Extending the HOL Theorem Prover with a Computer Algebra System to Reason about the Reals , 1993, HUG.

[17]  Paul S. Wang IAMC : Internet Accessible Mathematical Computation , 1998 .

[18]  Vannevar Bush,et al.  As we may think , 1945, INTR.

[19]  John Harrison,et al.  Reasoning About the Reals: The Marriage of HOL and Maple , 1993, LPAR.

[20]  Andreas Strotmann,et al.  OpenMath: compositionality achieved at last , 2000, SIGS.

[21]  Corporate Unicode Staff,et al.  The Unicode Standard: Worldwide Character Encoding , 1991 .

[22]  A. M. Cohen,et al.  A Type System for OpenMath , 1999 .

[23]  Kazimierz Ajdukiewicz Syntactic Connexion (1936) , 1978 .

[24]  Michael Kohlhase,et al.  An Implementation of Distributed Mathematical Services , 1998 .

[25]  Eunjin Kim,et al.  Knowledge networking for decision making about affordability of engineering design with OpenMath protocol support , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[26]  Philippe Marti Sdrc : un systeme de cooperation entre solveurs pour la resolution de contraintes non-lineaires sur les reels , 1996 .

[27]  Michael Wooldridge,et al.  Distributed Problem-Solving as Concurrent Theorem Proving , 1997, MAAMAW.

[28]  David Carlisle OpenMath, MathML, and XSL , 2000, SIGS.

[29]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[30]  Paul S. Wang,et al.  MP: a protocol for efficient exchange of mathematical expressions , 1994, ISSAC '94.

[31]  Jochen Dörre,et al.  On Constraint-Based Lambek Calculi , 1995, ArXiv.

[32]  C. M. Sperberg-McQueen,et al.  Guidelines for electronic text encoding and interchange , 1994 .

[33]  Richard M. Timoney,et al.  Style Sheet Languages and Mathematical Material , 1998 .

[34]  William D. Clinger,et al.  Revised3 report on the algorithmic language scheme , 1986, SIGP.

[35]  Hoon Hong First International Symposium on Parallel Symbolic Computation, PASCO '94, Hagenberg/Linz, Austria, September 26-28, 1994 , 1994 .

[36]  Michel Rueher,et al.  A Distributed Cooperating Constraints Solving System , 1995, Int. J. Artif. Intell. Tools.

[37]  Lex Wolters,et al.  Tomorrow's weather forecast: automatic code generation for atmospheric modeling , 1997 .

[38]  James H. Davenport,et al.  A small OpenMath type system , 2000, SIGS.

[39]  Arjeh M. Cohen,et al.  CD-rom with the book "Algebra Interactive" , 1999 .

[40]  B. J. Mailloux,et al.  Report on the Algorithmic Language , 1971 .

[41]  Fausto Giunchiglia,et al.  Reasoning Theories: Towards an Architecture for Open Mechanized Reasoning Systems , 1994, FroCoS.

[42]  Kyle A. Gallivan,et al.  XML-RPC Agents for Distributed Scientific Computing , 2000 .

[43]  John Abbott,et al.  A report on OpenMath: a protocol for the exchange of mathematical information , 1996, SIGS.

[44]  Douglas Adams Life, the Universe and Everything , 1982 .

[45]  Stéphane Dalmas,et al.  ASAP : a protocol for symbolic computation systems , 1994 .

[46]  Timothy W. Finin,et al.  A Proposal for a new KQML Specification , 1997 .

[47]  Erich Kaltofen,et al.  Process Scheduling in DSC and the Large Sparse Linear Systems Challenge , 1995, J. Symb. Comput..

[48]  Wolfgang Küchlin,et al.  Parallel computer algebra software as a Web component , 1998 .

[49]  Jack Dongarra,et al.  Pvm 3 user's guide and reference manual , 1993 .

[50]  Lex Wolters,et al.  CTADEL: a generator of multi-platform high performance codes for PDE-based scientific applications , 1996, ICS '96.

[51]  Michael Kohlhase,et al.  Dynamic Lambda Calculus , 1999 .

[52]  J. Abbott,,et al.  Open Math: Communicating Mathematical Information Between Co-operating Agents in a Knowledge Network , 1998 .

[53]  Andreas Strotmann,et al.  Objectives of Openmath , 1995 .

[54]  Andreas Strotmann,et al.  Typesetting REDUCE output with TEX — A REDUCE-TEX-Interface — , 1999 .

[55]  Loïc Pottier,et al.  On-line handwritten formula recognition using hidden Markov models and context dependent graph grammars , 1999, Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318).

[56]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[57]  John Harrison,et al.  A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.

[58]  Norbert Kajler,et al.  CAS/PI: a portable and extensible interface for computer algebra systems , 1992, ISSAC '92.

[59]  GAPSteve Linton OpenMath , IAMC and GAP , 1999 .

[60]  T. V. Raman,et al.  Documents are not just for printing , 1997 .

[61]  Andreas Strotmann,et al.  A TEX-REDUCED-Interface , 1989, SIGS.

[62]  Hans Schönemann,et al.  MPP: a framework for distributed polynomial computations , 1996, ISSAC '96.

[63]  Martin L. Griss,et al.  Standard LISP report , 1979, SIGP.

[64]  M. R. Genesereth,et al.  Knowledge Interchange Format Version 3.0 Reference Manual , 1992, LICS 1992.

[65]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[66]  Karsten Homann,et al.  Symbolisches Lösen mathematischer Probleme durch Kooperation algorithmischer und logischer Systeme , 1997, DISKI.

[67]  Steven J. DeRose,et al.  Xml pointer language (xpointer) , 1998 .

[68]  Paul S. Wang,et al.  Design and protocol for Internet accessible mathematical computation , 1999, ISSAC '99.

[69]  A. C. Norman Compact Delivery Support for REDUCE , 1993, DISCO.

[70]  Andreas Strotmann,et al.  Knowledge engineering methods for climate models , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[71]  David Orchard,et al.  XML Linking Language (XLink) , 2001 .

[72]  Timothy W. Finin,et al.  Specification of the KQML Agent-Communication Language , 1993 .

[73]  Richard J. Beach,et al.  CaminoReal: an interactive mathematical notebook , 1988 .

[74]  Harold Abelson,et al.  Revised5 report on the algorithmic language scheme , 1998, SIGP.

[75]  M. G. Richardson,et al.  Reconciling Symbolic and Numeric Computation in a Practical Setting , 1990, DISCO.

[76]  Jacques Calmet,et al.  Theorems and algorithms: an interface between Isabelle and Maple , 1995, ISSAC '95.

[77]  Samuel S. Dooley,et al.  Coordinating mathematical content and presentation markup in interactive mathematical documents , 1998, ISSAC '98.

[78]  S. Pinker The Language Instinct , 1994 .

[79]  Martin L. Griss,et al.  PSL: A Portable LISP System , 1982, LFP '82.

[80]  Robert van Engelen,et al.  ATMOL: A Domain-Specific Language for Atmospheric Modeling , 2001 .

[81]  Michael Kohlhase,et al.  MBase: Representing Knowledge and Context for the Integration of Mathematical Software Systems , 2001, J. Symb. Comput..

[82]  Eric van der Vlist,et al.  XML Schema , 2002 .