DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway

[1]  S. De,et al.  HUWE1 interacts with PCNA to alleviate replication stress , 2016, EMBO reports.

[2]  Yusuke Minakawa,et al.  ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation. , 2015, Cell reports.

[3]  Chunaram Choudhary,et al.  Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage , 2015, Nature.

[4]  Wei Yang,et al.  Tripartite DNA Lesion Recognition and Verification by XPC, TFIIH, and XPA in Nucleotide Excision Repair , 2015, Molecular cell.

[5]  Edward L. Huttlin,et al.  Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. , 2015, Molecular cell.

[6]  N. Mailand,et al.  SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair , 2015, Nature Communications.

[7]  W. Vermeulen,et al.  Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. , 2014, Experimental cell research.

[8]  M. Smerdon,et al.  UV damage-induced RNA polymerase II stalling stimulates H2B deubiquitylation , 2014, Proceedings of the National Academy of Sciences.

[9]  J. Hoeijmakers,et al.  Understanding nucleotide excision repair and its roles in cancer and ageing , 2014, Nature Reviews Molecular Cell Biology.

[10]  K. Yan,et al.  HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. , 2014, Biochemical and biophysical research communications.

[11]  Michal Zimmermann,et al.  53BP1: pro choice in DNA repair. , 2014, Trends in cell biology.

[12]  T. Lange,et al.  53 BP 1 : Pro Choice in DNA Repair , 2014 .

[13]  K. Yan,et al.  HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. , 2014, Biochemical and biophysical research communications.

[14]  Michael A. Freitas,et al.  H1 histones: current perspectives and challenges , 2013, Nucleic acids research.

[15]  Sebastian A. Wagner,et al.  RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response , 2013, The Journal of cell biology.

[16]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[17]  H. Naegeli,et al.  DNA Quality Control by a Lesion Sensor Pocket of the Xeroderma Pigmentosum Group D Helicase Subunit of TFIIH , 2013, Current Biology.

[18]  W. Vermeulen,et al.  PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1 , 2012, The Journal of cell biology.

[19]  Sebastian A. Wagner,et al.  Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass , 2012, Nature Cell Biology.

[20]  Wim Vermeulen,et al.  RNF168 Ubiquitinates K13-15 on H2A/H2AX to Drive DNA Damage Signaling , 2012, Cell.

[21]  A. Escargueil,et al.  PARPs and the DNA damage response. , 2012, Carcinogenesis.

[22]  David Komander,et al.  Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages , 2012, Nature Reviews Molecular Cell Biology.

[23]  Bill B. Chen,et al.  Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal , 2012, Molecular biology of the cell.

[24]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[25]  S. Nakajima,et al.  Monoubiquitinated Histone H2A Destabilizes Photolesion-containing Nucleosomes with Concomitant Release of UV-damaged DNA-binding Protein E3 Ligase , 2012, The Journal of Biological Chemistry.

[26]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[27]  J. Bartek,et al.  More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance , 2011, Nature Cell Biology.

[28]  A. Smogorzewska,et al.  Ubiquitylation and the Fanconi anemia pathway , 2011, FEBS letters.

[29]  N. Mailand,et al.  The ubiquitin‐ and SUMO‐dependent signaling response to DNA double‐strand breaks , 2011, FEBS letters.

[30]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[31]  T. Nouspikel Multiple roles of ubiquitination in the control of nucleotide excision repair , 2011, Mechanisms of Ageing and Development.

[32]  E. Nam,et al.  ATR signalling: more than meeting at the fork. , 2011, The Biochemical journal.

[33]  Ruedi Aebersold,et al.  Beyond ATM: The protein kinase landscape of the DNA damage response , 2011, FEBS letters.

[34]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[35]  S. Confalonieri,et al.  UMI, a Novel RNF168 Ubiquitin Binding Domain Involved in the DNA Damage Signaling Pathway , 2010, Molecular and Cellular Biology.

[36]  Samie R Jaffrey,et al.  Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling , 2010, Nature Biotechnology.

[37]  Y. Miki,et al.  Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. , 2010, Molecular cell.

[38]  J. Hoeijmakers DNA damage, aging, and cancer. , 2009, The New England journal of medicine.

[39]  K. Sugasawa,et al.  Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. , 2009, Molecular cell.

[40]  G. Dianov,et al.  Ubiquitin ligase ARF‐BP1/Mule modulates base excision repair , 2009, The EMBO journal.

[41]  N. Mailand,et al.  Nucleotide excision repair–induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response , 2009, The Journal of cell biology.

[42]  S. Gasser,et al.  Crosstalk between histone modifications during the DNA damage response. , 2009, Trends in cell biology.

[43]  D. Durocher,et al.  Regulatory ubiquitylation in response to DNA double-strand breaks. , 2009, DNA repair.

[44]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[45]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[46]  R. Bernards,et al.  Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1 , 2008, The EMBO journal.

[47]  P. Cohen,et al.  Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. , 2008, The Biochemical journal.

[48]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[49]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[50]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[51]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[52]  M. Ljungman,et al.  H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. , 2007, Carcinogenesis.

[53]  D. Payan,et al.  Substrate Modification with Lysine 63-linked Ubiquitin Chains through the UBC13-UEV1A Ubiquitin-conjugating Enzyme* , 2007, Journal of Biological Chemistry.

[54]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[55]  Jonathan R. Hall,et al.  Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. , 2007, Molecular biology of the cell.

[56]  J. Bartek,et al.  DNA damage checkpoints: from initiation to recovery or adaptation. , 2007, Current opinion in cell biology.

[57]  M. Falconi,et al.  DNA nucleotide excision repair-dependent signaling to checkpoint activation , 2006, Proceedings of the National Academy of Sciences.

[58]  J. Neefjes,et al.  DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. , 2006, Genes & development.

[59]  Hengbin Wang,et al.  Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. , 2006, Molecular cell.

[60]  M. Kapetanaki,et al.  The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Naegeli,et al.  Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair , 2006, Nature Structural &Molecular Biology.

[62]  Xiaodong Wang,et al.  Mule/ARF-BP1, a BH3-Only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis , 2005, Cell.

[63]  Keiji Tanaka,et al.  UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex , 2005, Cell.

[64]  Keiji Tanaka,et al.  DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. , 2005, DNA repair.

[65]  R. Oughtred,et al.  Characterization of E3Histone, a Novel Testis Ubiquitin Protein Ligase Which Ubiquitinates Histones , 2005, Molecular and Cellular Biology.

[66]  M. J. Moné,et al.  Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions , 2003, Molecular and Cellular Biology.

[67]  W. de Laat,et al.  DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. , 1998, Genes & development.