A new design optimization framework based on immune algorithm and Taguchi's method

This paper describes an innovative optimization approach that offers significant improvements in performance over existing methods to solve shape optimization problems. The new approach is based on two-stages which are (1) Taguchi's robust design approach to find appropriate interval levels of design parameters (2) Immune algorithm to generate optimal solutions using refined intervals from the previous stage. A benchmark test problem is first used to illustrate the effectiveness and efficiency of the approach. Finally, it is applied to the shape design optimization of a vehicle component to illustrate how the present approach can be applied for solving shape design optimization problems. The results show that the proposed approach not only can find optimal but also can obtain both better and more robust results than the existing algorithm reported recently in the literature.

[1]  Necmettin Kaya,et al.  Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm , 2007 .

[2]  Akira Todoroki,et al.  Permutation genetic algorithm for stacking sequence design of composite laminates , 2000 .

[3]  Tapabrata Ray,et al.  Leader identification and leader selection: its effect on a swarm’s performance for multi-objective design optimization problems , 2004 .

[4]  Chang-Soo Han,et al.  Design of automotive body structure using multicriteria optimization , 2006 .

[5]  Ali R. Yildiz,et al.  Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problems , 2008 .

[6]  Teck Seng Low,et al.  Design optimization of a non‐linear magnetic media system using finite element analysis and Taguchi method , 2002 .

[7]  F. Cheng,et al.  GENERALIZED CENTER METHOD FOR MULTIOBJECTIVE ENGINEERING OPTIMIZATION , 1999 .

[8]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[9]  Jonathan Timmis,et al.  Artificial immune systems as a novel soft computing paradigm , 2003, Soft Comput..

[10]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[11]  Kwon-Hee Lee,et al.  Automotive door design using structural optimization and design of experiments , 2003 .

[12]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[13]  Singiresu S. Rao Game theory approach for multiobjective structural optimization , 1987 .

[14]  Kalyanmoy Deb,et al.  Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design , 1999 .

[15]  Tung-Kuan Liu,et al.  Hybrid Taguchi-genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[16]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[17]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[18]  Tim Hendtlass,et al.  An Accelerated Genetic Algorithm , 1998, Applied Intelligence.

[19]  Chiuh-Cheng Chyu,et al.  Optimization of robust design for multiple quality characteristics , 2004 .

[20]  DUHaifeng,et al.  A novel algorithm of artificial immune system for high-dimensional function numerical optimization , 2005 .

[21]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[22]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[23]  Li Pheng Khoo,et al.  Line balancing of PCB assembly line using immune algorithms , 2003, Engineering with Computers.

[24]  R. Baun,et al.  Response Surface Designs for Three Factors at Three Levels , 1959 .

[25]  Guan-Chun Luh,et al.  Multi-modal topological optimization of structure using immune algorithm , 2004 .

[26]  Kazuhiro Saitou,et al.  Topology synthesis of multi-component structural assemblies in continuum domains , 2008, DAC 2008.

[27]  Ashutosh Tiwari,et al.  An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization , 2007, Comput. Ind..

[28]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[29]  A. George,et al.  Receptor editing during affinity maturation. , 1999, Immunology today.

[30]  Necmettin Kaya,et al.  Machining fixture locating and clamping position optimization using genetic algorithms , 2006, Comput. Ind..

[31]  Kalyanmoy Deb,et al.  Multi-Objective Evolutionary Algorithms for Engineering Shape Design , 2003 .

[32]  Ali R. Yildiz,et al.  An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry , 2009 .

[33]  Thomas E. Giddings,et al.  A finite element model for acoustic scattering from objects near a fluid-fluid interface , 2006 .

[34]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[35]  Peng Wei Multi-objective immune algorithm based on multi-population , 2009 .

[36]  Sundar Krishnamurty,et al.  A robust multi-criteria optimization approach , 1997 .

[37]  Mehmet Polat Saka,et al.  Optimum Design of Grillage Systems Using Genetic Algorithms , 1998 .

[38]  Guan-Chun Luh,et al.  MOIA: Multi-objective immune algorithm , 2003 .

[39]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[40]  Ian Masters,et al.  Design optimisation of aluminium recycling processes using Taguchi technique , 2002 .

[41]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[42]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[43]  Fazil O. Sonmez,et al.  Shape optimization of 2D structures using simulated annealing , 2007 .

[44]  Kazuhiro Saitou,et al.  Topology Optimization of Multicomponent Beam Structure via Decomposition-Based Assembly Synthesis , 2005 .

[45]  Guan-Chun Luh,et al.  Multi-objective optimal design of truss structure with immune algorithm , 2004 .

[46]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[47]  Mitsuo Gen,et al.  Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling , 2005, Comput. Ind..

[48]  Connie M. Borror,et al.  Robust Parameter Design: A Review , 2004 .

[49]  Ali Rıza Yıldız,et al.  A novel particle swarm optimization approach for product design and manufacturing , 2008 .

[50]  Krister Svanberg,et al.  Sequential integer programming methods for stress constrained topology optimization , 2007 .

[51]  Du Hai-feng,et al.  A noval algorithm of artificial immune system for high-dimensional function numerical optimization∗ , 2005 .

[52]  Ali R. Yildiz,et al.  Hybrid immune-simulated annealing algorithm for optimal design and manufacturing , 2009 .

[53]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[54]  Marc Schoenauer,et al.  ASCHEA: new results using adaptive segregational constraint handling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[55]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[56]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: Part I-Basic Theory and Applications , 1999 .

[57]  G. Begni,et al.  Signal to noise ratios , 1987 .