Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells.

[1]  Linheng Li,et al.  The stem cell niches in bone. , 2006, The Journal of clinical investigation.

[2]  K. Moore,et al.  Stem Cells and Their Niches , 2006, Science.

[3]  D. Farkas,et al.  The tale of early hematopoietic cell seeding in the bone marrow niche. , 2006, Stem cells and development.

[4]  A. Trumpp,et al.  Bone-marrow haematopoietic-stem-cell niches , 2006, Nature Reviews Immunology.

[5]  C. Werner,et al.  Modulating Extracellular Matrix at Interfaces of Polymeric Materials , 2006 .

[6]  B. Williams,et al.  Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. , 2005, Blood.

[7]  C. Werner,et al.  Fibronectin fibril pattern displays the force balance of cell–matrix adhesion , 2005, European Biophysics Journal.

[8]  C. Werner,et al.  In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces. , 2004, Biomacromolecules.

[9]  R. Alon,et al.  CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. , 2004, Blood.

[10]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[11]  Sriram Neelamegham,et al.  Transport Features, Reaction Kinetics and Receptor Biomechanics Controlling Selectin and Integrin Mediated Cell Adhesion , 2004, Cell communication & adhesion.

[12]  P. Huijgens,et al.  In vitro model for hematopoietic progenitor cell homing reveals endothelial heparan sulfate proteoglycans as direct adhesive ligands , 2003, Journal of leukocyte biology.

[13]  C. Werner,et al.  Fibronectin anchorage to polymer substrates controls the initial phase of endothelial cell adhesion. , 2003, Journal of Biomedical Materials Research. Part A.

[14]  C. Werner,et al.  Maleic anhydride copolymers--a versatile platform for molecular biosurface engineering. , 2003, Biomacromolecules.

[15]  Harold P. Erickson,et al.  Force Measurements of the α5β1 Integrin–Fibronectin Interaction , 2003 .

[16]  D. Ingber Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. , 2002, Circulation research.

[17]  Christian J Stoeckert,et al.  A molecular profile of a hematopoietic stem cell niche , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Curtis,et al.  Cell reactions with biomaterials: the microscopies. , 2001, European cells & materials.

[19]  F. Prósper,et al.  Opposing effects of engagement of integrins and stimulation of cytokine receptors on cell cycle progression of normal human hematopoietic progenitors. , 2000, Blood.

[20]  E. Evans,et al.  Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. , 1999, Biophysical chemistry.

[21]  O. Gallet,et al.  Plasma fibronectin: three steps to purification and stability. , 1999, Protein expression and purification.

[22]  L. Ashman,et al.  The biology of stem cell factor and its receptor C-kit. , 1999, The international journal of biochemistry & cell biology.

[23]  Donald E. Ingber,et al.  The structural and mechanical complexity of cell-growth control , 1999, Nature Cell Biology.

[24]  A. Whetton,et al.  Homing and mobilization in the stem cell niche. , 1999, Trends in cell biology.

[25]  C. Verfaillie,et al.  Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis. , 1999, Experimental hematology.

[26]  I. Kato,et al.  Adhesion to fibronectin maintains regenerative capacity during ex vivo culture and transduction of human hematopoietic stem and progenitor cells. , 1998, Blood.

[27]  T. Oegema,et al.  Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. , 1998, Blood.

[28]  D. McMillin,et al.  VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. , 1998, The Journal of clinical investigation.

[29]  S. Nilsson,et al.  Immunofluorescence Characterization of Key Extracellular Matrix Proteins in Murine Bone Marrow In Situ , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[30]  G. Basso,et al.  Cell Adhesion Molecule Expression in Cord Blood CD34+ Cells , 1998, Stem cells.

[31]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[32]  A. Tsukamoto,et al.  The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. , 1997, Blood.

[33]  G. Gerisch,et al.  Motility and substratum adhesion of Dictyostelium wild-type and cytoskeletal mutant cells: a study by RICM/bright-field double-view image analysis. , 1995, Journal of cell science.

[34]  S. Brew,et al.  Purification of human plasma fibronectin , 1994 .

[35]  R. V. van Oers,et al.  Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activation-dependent way. , 1993, Blood.

[36]  Y. Kaneko,et al.  Adhesion of mouse mast cells to fibroblasts: Adverse effects of steel (SI) mutation , 1991, Journal of cellular physiology.