A dynamic shuffled differential evolution algorithm for data clustering

In order to further improve the convergence performance of data clustering algorithms, a dynamic shuffled differential evolution algorithm, DSDE for short, is presented in this paper. In DSDE, mutation strategy DE/best/1 is employed, which can take advantage of the direction guidance information of best individual so as to speed up the corresponding algorithm. Meanwhile, inspired by shuffled frog leaping algorithm, a sorting scheme and a randomly shuffled scheme are used to divide a total population into two subpopulations during the evolving process. In this way, mutation strategy DE/best/1 is actually used in two subpopulations, respectively, which can effectively exchange information between two subpopulations and balance the exploitation ability of DE/best/1/bin. In addition, most popular data clustering algorithms suffer from the choice of initial clustering centers, which may cause a premature convergence. Here a novel initial technique, called the random multi-step sampling, is integrated into DSDE to overcome the shortcoming. Then an experiment tested on 11 well-known datasets has been carried out, and the related results demonstrate that DSDE significantly outperforms DE/rand/1/bin and DE/best/1/bin. Next, another comparison among DSDE and other four well-known data clustering algorithms is conducted. The related results also show that DSDE is superior to other four approaches including particle swarm optimization with age-group topology (PSOAG) in terms of objective function value, i.e., the sum of intra-cluster distance. In a word, all the experimental results confirm that the proposed algorithm DSDE can be considered as an excellent tool for data clustering.

[1]  Erwie Zahara,et al.  A hybridized approach to data clustering , 2008, Expert Syst. Appl..

[2]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[3]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[4]  M BagirovAdil Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008 .

[5]  XuLei Yang,et al.  A robust deterministic annealing algorithm for data clustering , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[6]  Amine Chikh,et al.  Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm , 2013, Comput. Methods Programs Biomed..

[7]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[8]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[9]  V. Mani,et al.  Clustering using firefly algorithm: Performance study , 2011, Swarm Evol. Comput..

[10]  Tunchan Cura,et al.  A particle swarm optimization approach to clustering , 2012, Expert Syst. Appl..

[11]  Luciano da Fontoura Costa,et al.  A Complex Networks Approach for Data Clustering , 2011, ArXiv.

[12]  Shokri Z. Selim,et al.  A simulated annealing algorithm for the clustering problem , 1991, Pattern Recognit..

[13]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[14]  Salwani Abdullah,et al.  A combined approach for clustering based on K-means and gravitational search algorithms , 2012, Swarm Evol. Comput..

[15]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[16]  Abdolreza Hatamlou,et al.  In search of optimal centroids on data clustering using a binary search algorithm , 2012, Pattern Recognit. Lett..

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[19]  Mohamed S. Kamel,et al.  An aggregated clustering approach using multi-ant colonies algorithms , 2006, Pattern Recognit..

[20]  Mohammad Taherdangkoo,et al.  A powerful hybrid clustering method based on modified stem cells and Fuzzy C-means algorithms , 2013, Eng. Appl. Artif. Intell..

[21]  Ujjwal Maulik,et al.  An evolutionary technique based on K-Means algorithm for optimal clustering in RN , 2002, Inf. Sci..

[22]  Xiaohui Yan,et al.  A new approach for data clustering using hybrid artificial bee colony algorithm , 2012, Neurocomputing.

[23]  Sergio Gómez,et al.  Unsupervised Clustering Analysis: a Multiscale Complex Networks Approach , 2011, Int. J. Bifurc. Chaos.

[24]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Ângelo Cardoso,et al.  Iterative random projections for high-dimensional data clustering , 2012, Pattern Recognit. Lett..

[26]  Cong Wang,et al.  Chaotic ant swarm approach for data clustering , 2012, Appl. Soft Comput..

[27]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[28]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[29]  Magdalene Marinaki,et al.  A hybrid stochastic genetic–GRASP algorithm for clustering analysis , 2008, Oper. Res..

[30]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[31]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[32]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[33]  Mehran Yazdi,et al.  A robust clustering method based on blind, naked mole-rats (BNMR) algorithm , 2013, Swarm Evol. Comput..

[34]  Ali Maroosi,et al.  Application of shuffled frog-leaping algorithm on clustering , 2009 .

[35]  Taher Niknam,et al.  An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering , 2009 .

[36]  Taher Niknam,et al.  An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis , 2010, Appl. Soft Comput..

[37]  Sanghamitra Bandyopadhyay,et al.  A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[38]  Bo Jiang,et al.  Particle swarm optimization with age-group topology for multimodal functions and data clustering , 2013, Commun. Nonlinear Sci. Numer. Simul..

[39]  Lei Zhang,et al.  A novel ant-based clustering algorithm using the kernel method , 2011, Inf. Sci..

[40]  Li-Yeh Chuang,et al.  Chaotic particle swarm optimization for data clustering , 2011, Expert Syst. Appl..

[41]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[42]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[43]  Chi-Yang Tsai,et al.  Particle swarm optimization with selective particle regeneration for data clustering , 2011, Expert Syst. Appl..

[44]  Tieli Sun,et al.  An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization , 2009, Expert Syst. Appl..

[45]  Babak Amiri,et al.  Application of Teaching-Learning-Based Optimization Algorithm on Cluster Analysis , 2012 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Sanghamitra Bandyopadhyay,et al.  GAPS: A clustering method using a new point symmetry-based distance measure , 2007, Pattern Recognit..

[48]  Adil M. Bagirov,et al.  Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008, Pattern Recognit..

[49]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[50]  Tiranee Achalakul,et al.  The best-so-far ABC with multiple patrilines for clustering problems , 2013, Neurocomputing.

[51]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..