Planar functions and perfect nonlinear monomials over finite fields

The study of finite projective planes involves planar functions, namely, functions $$f:\mathbb {F}_q\rightarrow \mathbb {F}_q$$f:Fq→Fq such that, for each $$a\in \mathbb {F}_q^*$$a∈Fq∗, the function $$c\mapsto f(c+a)-f(c)$$c↦f(c+a)-f(c) is a bijection on $$\mathbb {F}_q$$Fq. Planar functions are also used in the construction of DES-like cryptosystems, where they are called perfect nonlinear functions. We determine all planar functions on $$\mathbb {F}_q$$Fq of the form $$c\mapsto c^t$$c↦ct, under the assumption that $$q\ge (t-1)^4$$q≥(t-1)4. This resolves two conjectures of Hernando, McGuire and Monserrat. Our arguments also yield a new proof of a conjecture of Segre and Bartocci about monomial hyperovals in finite Desarguesian projective planes.

[1]  Lars R. Knudsen,et al.  Provable Security Against Differential Cryptanalysis , 1992, CRYPTO.

[2]  G. Turnwald A New Criterion for Permutation Polynomials , 1995 .

[3]  Gary McGuire,et al.  On the classification of exceptional planar functions over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb { , 2013, Geometriae Dedicata.

[4]  Joseph L. Yucas,et al.  Dickson polynomials , 2013, Handbook of Finite Fields.

[5]  L. Dickson The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .

[6]  Felix Lazebnik,et al.  On the classification of planar monomials over fields of square order , 2012, Finite Fields Their Appl..

[7]  S. Tomizawa Decompositions of Polynomial Diagonals-Parameter Symmetry Models for Square Contingency Tables with Ordered Categories , 1991 .

[8]  Beniamino Segre,et al.  Ovali ed altre curve nei piani di Galois di caratteristica due , 1971 .

[9]  Norman L. Johnson Projective planes of prime order p that admit collineation groups of order p2 , 1987 .

[10]  Gary McGuire,et al.  Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes , 2010, Des. Codes Cryptogr..

[11]  Serge Tabachnikov,et al.  Arithmetical properties of binomial coefficients , 2007 .

[12]  Robert S. Coulter The classification of planar monomials over fields of prime square order , 2006 .

[13]  Elodie Leducq Functions which are PN on infiitely many extensions of Fp, p odd , 2010 .

[14]  Permutation groups of prime degree, a quick proof of Burnside’s theorem , 2003, math/0310200.

[15]  Francisco Monserrat,et al.  On the classification of exceptional planar functions over $$\mathbb {F}_{p}$$Fp , 2013, ArXiv.

[16]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[17]  É. Lucas,et al.  Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier , 1878 .

[18]  Elodie Leducq,et al.  Functions which are PN on infinitely many extensions of $$\mathbb {F}_p,\,p$$Fp,p odd , 2010, Des. Codes Cryptogr..

[19]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[20]  Robert M. Guralnick,et al.  Exceptional Covers and Bijections on Rational Points , 2005 .

[21]  Stephen D. Cohen,et al.  Bivariate factorizations connecting Dickson polynomials and Galois theory , 2000 .

[22]  P. Müller A Weil-Bound Free Proof of Schur's Conjecture , 1997 .

[23]  Rudolf Lide,et al.  Finite fields , 1983 .

[24]  Michael E. Zieve,et al.  A new family of exceptional polynomials in characteristic two , 2007, 0707.1837.

[25]  V. Jha,et al.  A structure theory for two-dimensional translation planes of order q2 that admit collineation groups of order q2 , 1989 .

[26]  Kenneth S. Williams,et al.  On Exceptional Polynomials , 1968, Canadian Mathematical Bulletin.

[27]  Michael E. Zieve,et al.  Polynomials with PSL(2) monodromy , 2007, 0707.1835.