Planar functions and perfect nonlinear monomials over finite fields
暂无分享,去创建一个
[1] Lars R. Knudsen,et al. Provable Security Against Differential Cryptanalysis , 1992, CRYPTO.
[2] G. Turnwald. A New Criterion for Permutation Polynomials , 1995 .
[3] Gary McGuire,et al. On the classification of exceptional planar functions over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb { , 2013, Geometriae Dedicata.
[4] Joseph L. Yucas,et al. Dickson polynomials , 2013, Handbook of Finite Fields.
[5] L. Dickson. The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .
[6] Felix Lazebnik,et al. On the classification of planar monomials over fields of square order , 2012, Finite Fields Their Appl..
[7] S. Tomizawa. Decompositions of Polynomial Diagonals-Parameter Symmetry Models for Square Contingency Tables with Ordered Categories , 1991 .
[8] Beniamino Segre,et al. Ovali ed altre curve nei piani di Galois di caratteristica due , 1971 .
[9] Norman L. Johnson. Projective planes of prime order p that admit collineation groups of order p2 , 1987 .
[10] Gary McGuire,et al. Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes , 2010, Des. Codes Cryptogr..
[11] Serge Tabachnikov,et al. Arithmetical properties of binomial coefficients , 2007 .
[12] Robert S. Coulter. The classification of planar monomials over fields of prime square order , 2006 .
[13] Elodie Leducq. Functions which are PN on infiitely many extensions of Fp, p odd , 2010 .
[14] Permutation groups of prime degree, a quick proof of Burnside’s theorem , 2003, math/0310200.
[15] Francisco Monserrat,et al. On the classification of exceptional planar functions over $$\mathbb {F}_{p}$$Fp , 2013, ArXiv.
[16] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[17] É. Lucas,et al. Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier , 1878 .
[18] Elodie Leducq,et al. Functions which are PN on infinitely many extensions of $$\mathbb {F}_p,\,p$$Fp,p odd , 2010, Des. Codes Cryptogr..
[19] P. Dembowski,et al. Planes of ordern with collineation groups of ordern2 , 1968 .
[20] Robert M. Guralnick,et al. Exceptional Covers and Bijections on Rational Points , 2005 .
[21] Stephen D. Cohen,et al. Bivariate factorizations connecting Dickson polynomials and Galois theory , 2000 .
[22] P. Müller. A Weil-Bound Free Proof of Schur's Conjecture , 1997 .
[23] Rudolf Lide,et al. Finite fields , 1983 .
[24] Michael E. Zieve,et al. A new family of exceptional polynomials in characteristic two , 2007, 0707.1837.
[25] V. Jha,et al. A structure theory for two-dimensional translation planes of order q2 that admit collineation groups of order q2 , 1989 .
[26] Kenneth S. Williams,et al. On Exceptional Polynomials , 1968, Canadian Mathematical Bulletin.
[27] Michael E. Zieve,et al. Polynomials with PSL(2) monodromy , 2007, 0707.1835.