Optimal parameters for numerical solvers of PDEs

In this paper we introduce a procedure for identifying optimal methods in parametric families of numerical schemes for initial value problems in partial differential equations. The procedure maximizes accuracy by adaptively computing optimal parameters that minimize a defect-based estimate of the local error at each time-step. Viable refinements are proposed to reduce the computational overheads involved in the solution of the optimization problem, and to maintain conservation properties of the original methods. We apply the new strategy to recently introduced families of conservative schemes for the Korteweg-de Vries equation and for a nonlinear heat equation. Numerical tests demonstrate the improved efficiency of the new technique in comparison with existing methods.

[1]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .

[2]  Mechthild Thalhammer,et al.  The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representation and application to nonlinear Schrödinger equations in the semi-classical regime , 2010 .

[3]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[4]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..

[5]  Volker Grimm,et al.  Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles , 2014, SIAM J. Matrix Anal. Appl..

[6]  U. Ascher,et al.  On symplectic and multisymplectic schemes for the KdV equation , 2005 .

[7]  W. H. Enright A new error-control for initial value solvers , 1989 .

[8]  Lawrence F. Shampine,et al.  Error Estimation and Control for ODEs , 2005, J. Sci. Comput..

[9]  Peter E. Hydon,et al.  Locally conservative finite difference schemes for the modified KdV equation , 2019, Journal of Computational Dynamics.

[10]  S. Güttel Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection , 2013 .

[11]  Desmond J. Higham,et al.  Robust defect control with Runge-Kutta schemes , 1989 .

[12]  Espen R. Jakobsen,et al.  Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part II: Schemes and Experiments , 2018, SIAM J. Numer. Anal..

[13]  Gianluca Frasca Caccia,et al.  Numerical preservation of multiple local conservation laws , 2021, Appl. Math. Comput..

[14]  F'elix del Teso,et al.  Finite difference method for a fractional porous medium equation , 2013, 1301.4349.

[15]  P. Hydon,et al.  Simple bespoke preservation of two conservation laws , 2018, IMA Journal of Numerical Analysis.

[16]  Winfried Auzinger,et al.  Symmetrized local error estimators for time-reversible one-step methods in nonlinear evolution equations , 2018, J. Comput. Appl. Math..

[17]  M. Gurtin,et al.  A Coordinate Transformation for the Porous Media Equation that Renders the Free-Boundary Stationary. , 1984 .

[18]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[19]  Winfried Auzinger,et al.  Time adaptive Zassenhaus splittings for the Schrödinger equation in the semiclassical regime , 2019, Appl. Math. Comput..

[20]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems , 2014, J. Comput. Appl. Math..

[21]  P. Jamet,et al.  A Finite Difference Approach to Some Degenerate Nonlinear Parabolic Equations , 1971 .

[22]  P. Singh Sixth-order schemes for laser-matter interaction in the Schrödinger equation. , 2018, The Journal of chemical physics.

[23]  David Hoff,et al.  A linearly implicit finite-difference scheme for the one-dimensional porous medium equation , 1985 .

[24]  Fernando Casas,et al.  Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.

[25]  Stefan Güttel,et al.  The RKFIT Algorithm for Nonlinear Rational Approximation , 2017, SIAM J. Sci. Comput..