A two-surface plasticity model for clay

Abstract This paper presents a two-surface plasticity constitutive model for clays based on critical-state soil mechanics. The model reproduces the mechanical response of clays under multi-axial loading conditions and predicts both drained and undrained behavior at small and large strains. The constitutive model also captures both the strain-rate-dependent behavior of clays and the drop in strength towards a residual value at very large shear strains using novel approaches. The paper also describes a hierarchical process for the determination of the model parameters relying more on simple curve fitting of model equations to experimental data points corresponding to specific soil states instead of trial-and-error simulations of entire experiments. Model parameter values are determined for London Clay, San Francisco Bay Mud, Boston Blue Clay and Lower Cromer Till, and the performance of the model in simulating mechanical response of clays is demonstrated for a variety of initial states and loading conditions.

[1]  D. Muir Wood,et al.  A kinematic hardening constitutive model for sands: the multiaxial formulation , 1999 .

[2]  O. C. Zienkiewicz,et al.  VISCO-PLASTICITY--PLASTICITY AND CREEP IN ELASTIC SOLIDS--A UNIFIED NUMERICAL SOLUTION APPROACH , 1974 .

[3]  Hai-Sui Yu,et al.  CASM: a unified state parameter model for clay and sand , 1998 .

[4]  Zhi-Liang Wang,et al.  Bounding Surface Hypoplasticity Model for Sand , 1990 .

[5]  Dimitrios Loukidis Advanced constitutive modeling of sands and applications to foundation engineering , 2006 .

[6]  L. Matešić,et al.  Strain-rate effect on soil secant shear modulus at small cyclic strains , 2003 .

[7]  O. C. Zienkiewicz,et al.  Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils , 1979 .

[8]  R. Jardine,et al.  The stiffness of natural London Clay , 2007 .

[9]  S. K. Jain Analysis of the pressuremeter test by FEM formulation of the elasto-plastic consolidation , 1985 .

[10]  Yosuke Higo,et al.  Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil , 2002 .

[11]  R. D. Krieg A Practical Two Surface Plasticity Theory , 1975 .

[12]  O. Zienkiewicz,et al.  An anisotropic hardening model for soils and its application to cyclic loading , 1978 .

[13]  Andrew J. Whittle,et al.  Evaluation of a constitutive model for clays and sands: Part I – sand behaviour , 2002 .

[14]  Majid T. Manzari,et al.  A critical state two-surface plasticity model for sands , 1997 .

[15]  Andrew J. Whittle,et al.  Formulation of a unified constitutive model for clays and sands , 1999 .

[16]  D. Penumadu,et al.  A laboratory study of normally consolidated kaolin clay , 2005 .

[17]  Hans Petter Jostad,et al.  A constitutive model for anisotropic and strain-softening clay , 2002 .

[18]  Majid T. Manzari,et al.  SIMPLE PLASTICITY SAND MODEL ACCOUNTING FOR FABRIC CHANGE EFFECTS , 2004 .

[19]  Nickolas J. Themelis,et al.  ANISOTROPIC ELASTOPLASTIC BOUNDING SURFACE MODEL FOR COHESIVE SOILS , 2002 .

[20]  Poul V. Lade Evaluation of Kinematic Hardening Concepts for Modeling Large Stress. Reversals and Cross-Anisotropy in Soils , 2002 .

[21]  Rodrigo Salgado,et al.  Modeling sand response using two-surface plasticity , 2009 .

[22]  K. Terzaghi,et al.  Soil mechanics in engineering practice , 1948 .

[23]  R. K. Rowe,et al.  Evaluation of the predictive ability of two elastic-viscoplastic constitutive models , 2005 .

[24]  Sayuri Kimoto,et al.  Calibration of Elasto-Viscoplastic Models for Cohesive Soils , 2005 .

[25]  C. P. Wroth,et al.  Application of the failure state in undrained simple shear to the shaft capacity of driven piles , 1981 .

[26]  Takeshi Kodaka,et al.  A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground , 2004 .

[27]  Achilleas G. Papadimitriou,et al.  Plasticity model for sand under small and large cyclic strains: a multiaxial formulation , 2002 .

[28]  Takeshi Kamei,et al.  INFLUENCE OF STRAIN RATE ON UNDRAINED SHEAR CHARACTERISTICS OF K0-CONSOLIDATED COHESIVE SOILS , 1986 .

[29]  Mark Randolph,et al.  Computational techniques and shear band development for cylindrical and spherical penetrometers in strain-softening clay , 2007 .

[30]  T. Hueckel,et al.  Some hysteresis effects of the behaviour of geologic media , 1979 .

[31]  Kandiah Sribalaskandarajah,et al.  Simple Double‐Hardening Model for geomaterials , 1992 .

[32]  Yannis F. Dafalias,et al.  VERIFICATION OF THE ELASTOPLASTIC-VISCOPLASTIC BOUNDING SURFACE MODEL FOR COHESIVE SOILS , 1990 .

[33]  A. Anandarajah,et al.  Variation of Fabric Anisotropy of Kaolinite in Triaxial Loading , 1996 .

[34]  Richard B. Nelson,et al.  Modelling the elastic behaviour of granular materials , 1987 .

[35]  Fred H. Kulhawy,et al.  Manual on estimating soil properties for foundation design , 1990 .

[36]  Yannis F. Dafalias,et al.  Dilatancy for cohesionless soils , 2000 .

[37]  Piotr Perzyna,et al.  The constitutive equations for rate sensitive plastic materials , 1963 .

[38]  Leonard R. Herrmann,et al.  Bounding surface plasticity. II: application to isotropic cohesive soils , 1986 .

[39]  Ken Been,et al.  A STATE PARAMETER FOR SANDS , 1985 .

[40]  Thomas C. Sheahan,et al.  Rate-Dependent Undrained Shear Behavior of Saturated Clay , 1996 .

[41]  M. Maksimović,et al.  On the residual shearing strengh of clays , 1989 .

[42]  P. R. Vaughan,et al.  The drained residual strength of cohesive soils , 1981 .

[43]  Y. Dafalias,et al.  Calibration of a Simple Anisotropic Plasticity Model for Soft Clays , 2005 .

[44]  Andrew J. Whittle,et al.  Evaluation of a constitutive model for overconsolidated clays , 1993 .

[45]  P. A. Vermeer,et al.  A double hardening model for sand , 1978 .

[46]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[47]  R. Jardine,et al.  The influence of structure on the behaviour of London Clay , 2007 .

[48]  Teruo Nakai,et al.  A GENERALIZED ELASTOPLASTIC CONSTITUTIVE MODEL FOR CLAY IN THREE-DIMENSIONAL STRESSES , 1986 .

[49]  Poul V. Lade,et al.  Anisotropic three-dimensional behavior of a normally consolidated clay , 1993 .

[50]  C. Ladd,et al.  THE INFLUENCE OF STRESS SYSTEM ON THE BEHAVIOR OF SATURATED CLAYS DURING UNDRAINED SHEAR , 1965 .

[51]  Egor P. Popov,et al.  A model of nonlinearly hardening materials for complex loading , 1975 .

[52]  R. Henke,et al.  Selected Issues Regarding the Torsional Cylindrical Impulse Shear Test , 2003 .

[53]  P. R. Vaughan,et al.  FAST SHEARING OF PRE-EXISTING SHEAR ZONES IN SOIL , 1996 .

[54]  L. Bjerrum ENGINEERING GEOLOGY OF NORWEGIAN NORMALLY-CONSOLIDATED MARINE CLAYS AS RELATED TO SETTLEMENTS OF BUILDINGS , 1967 .

[55]  X. S. Li,et al.  A sand model with state-dependent dilatancy , 2002 .

[56]  Poul V. Lade,et al.  Modeling failure in cross-anisotropic frictional materials , 2007 .

[57]  Ba Baudet,et al.  Influence of structure on the time-dependent behaviour of a stiff sedimentary clay. Closure to discussion. , 2007 .

[59]  Serge Leroueil,et al.  Stress–strain–strain rate relation for the compressibility of sensitive natural clays , 1985 .

[60]  Jonathan D. Bray,et al.  Effect of Pile Driving on Static and Dynamic Properties of Soft Clay , 2002 .

[61]  J. D. Brown,et al.  A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength , 1971 .

[62]  E. Hambly PLANE STRAIN BEHAVIOR OF REMOLDED NORMALLY CONSOLIDATED KAOLIN , 1972 .

[63]  John T. Germaine,et al.  Factors Affecting the Initial Stiffness of Cohesive Soils , 2005 .

[64]  Thomas C. Sheahan,et al.  An experimental study of the time-dependent undrained shear behavior of resedimented clay using automated stress path triaxial equipment , 1991 .

[65]  R. G. Campanella,et al.  Triaxial and Plane Strain Behavior of Natural Clay , 1974 .

[67]  Abir Al-Tabbaa,et al.  Stabilisation/solidification treatment and remediation: Advances in S/S for waste and contaminated land , 2007 .

[68]  D. Katti,et al.  Undrained Response of Clays to Varying Strain Rate , 2003 .

[69]  Yannis F. Dafalias,et al.  Sand Plasticity Model Accounting for Inherent Fabric Anisotropy , 2004 .

[70]  I. Vardoulakis Dynamic thermo-poro-mechanical analysis of catastrophic landslides , 2002 .

[71]  John T. Germaine,et al.  Small-Strain Nonlinearity of Normally Consolidated Clay , 2007 .

[72]  Yannis F. Dafalias,et al.  THEORETICAL ASPECTS OF THE ELASTOPLASTIC-VISCOPLASTIC BOUNDING SURFACE MODEL FOR COHESIVE SOILS , 1990 .

[73]  Bruce L. Kutter,et al.  ELASTIC-VISCOPLASTIC MODELLING OF THE RATE-DEPENDENT BEHAVIOUR OF CLAYS , 1992 .

[74]  Alec Westley Skempton,et al.  Residual strength of clays in landslides, folded strata and the laboratory , 1985 .

[75]  Poul V. Lade,et al.  Anisotropy of normally consolidated San Francisco Bay Mud , 1991 .

[76]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[77]  Jean-Pierre Bardet,et al.  Bounding Surface Plasticity Model for Sands , 1986 .

[78]  G. Biscontin,et al.  Influence of Peripheral Velocity on Vane Shear Strength of an Artificial Clay , 2001 .

[79]  Seiki Ohmaki,et al.  A MECHANICAL MODEL FOR THE STRESS-STRAIN BEHAVIOUR OF NORMALLY CONSOLIDATED COHESIVE SOIL , 1979 .

[80]  Majid T. Manzari,et al.  SANICLAY: simple anisotropic clay plasticity model , 2006 .

[81]  Abir Al-Tabbaa,et al.  An experimentally based "bubble' model for clay , 1989 .