Integrating financial risk measures into the design and planning of closed-loop supply chains

Abstract In this paper, a mixed integer linear programming (MILP) formulation is proposed that integrates financial risk measures into the design and planning of closed-loop supply chains, considering demand uncertainty of final products. The goal is to maximize the supply chain expected net present value (ENPV), while simultaneously minimizing the associated risk. The augmented ɛ-constraint method is used to generate an approximation to the Pareto-optimal curve for each risk measure. Four different risk measures, most popular measures within the literature, are implemented, compared and directions for their usage by decision makers are discussed. Managerial insights are outlined based in decision makers’ risk profile and goal of the risk minimization. A European supply chain case study is explored.

[1]  O. Tang,et al.  Identifying risk issues and research advancements in supply chain risk management , 2011 .

[2]  Costas D. Maranas,et al.  Managing demand uncertainty in supply chain planning , 2003, Comput. Chem. Eng..

[3]  Uta Jüttner Supply chain risk management: Understanding the business requirements from a practitioner perspective , 2005 .

[4]  Stefan Nickel,et al.  A multi-stage stochastic supply network design problem with financial decisions and risk management , 2012 .

[5]  Shabbir Ahmed,et al.  Robust Process Planning under Uncertainty , 1998 .

[6]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[7]  Laureano F. Escudero,et al.  On stochastic dynamic programming for solving large-scale planning problems under uncertainty , 2009, Comput. Oper. Res..

[8]  L. Puigjaner,et al.  Multiobjective supply chain design under uncertainty , 2005 .

[9]  David Thomas,et al.  State of the art in supply chain risk management research: empirical and conceptual findings and a roadmap for the implementation in practice , 2010, Logistics Research.

[10]  Ana Paula Barbosa-Póvoa,et al.  Process Supply Chains Management – Where are We? Where to Go Next? , 2014, Front. Energy Res..

[11]  Ana Paula F. D. Barbosa-Póvoa,et al.  The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure , 2009, Comput. Chem. Eng..

[12]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[13]  Lazaros G. Papageorgiou,et al.  Supply chain optimisation for the process industries: Advances and opportunities , 2009, Comput. Chem. Eng..

[14]  C. Pantelides,et al.  Design of Multi-echelon Supply Chain Networks under Demand Uncertainty , 2001 .

[15]  J. L. Cavinato Supply chain logistics risks: From the back room to the board room , 2004 .

[16]  R. Dekker,et al.  Reverse logistics : quantitative models for closed-loop supply chains , 2004 .

[17]  Augusto Q. Novais,et al.  Addressing the uncertain quality and quantity of returns in closed-loop supply chains , 2012, Comput. Chem. Eng..

[18]  Fengqi You,et al.  Design under uncertainty of hydrocarbon biorefinery supply chains: Multiobjective stochastic programming models, decomposition algorithm, and a Comparison between CVaR and downside risk , 2012 .

[19]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[20]  Sebastian Engell,et al.  Risk conscious solution of planning problems under uncertainty by hybrid multi-objective evolutionary algorithms , 2011, Comput. Chem. Eng..

[21]  Fengqi You,et al.  Risk Management for a Global Supply Chain Planning Under Uncertainty : Models and Algorithms , 2009 .

[22]  Rommert Dekker,et al.  A stochastic approach to a case study for product recovery network design , 2005, Eur. J. Oper. Res..

[23]  Michael C. Georgiadis,et al.  Optimal design of supply chain networks under uncertain transient demand variations , 2011 .

[24]  D. Bogataj,et al.  Measuring the supply chain risk and vulnerability in frequency space , 2007 .

[25]  S. Minner,et al.  Manufacturing network configuration in supply chains with product recovery , 2009 .

[26]  Gintaras V. Reklaitis,et al.  Risk and uncertainty in managing chemical manufacturing supply chains , 2000 .

[27]  Robert E. Spekman,et al.  Risky business: expanding the discussion on risk and the extended enterprise , 2004 .

[28]  J. March,et al.  Managerial perspectives on risk and risk taking , 1987 .

[29]  Susana Relvas,et al.  Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty , 2013, Eur. J. Oper. Res..

[30]  M. El-Sayed,et al.  A stochastic model for forward-reverse logistics network design under risk , 2010, Comput. Ind. Eng..

[31]  Maria C. Carneiro,et al.  Risk Management in the Oil Supply Chain: A CVaR Approach , 2010 .

[32]  Mir-Bahador Aryanezhad,et al.  A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty , 2011 .

[33]  Nilay Shah,et al.  An Optimization-Based Framework for Process Planning under Uncertainty with Risk Management , 2011 .

[34]  Ovidiu Listes,et al.  A generic stochastic model for supply-and-return network design , 2007, Comput. Oper. Res..

[35]  Rakesh Nagi,et al.  Robust supply chain design under uncertain demand in agile manufacturing , 2010, Comput. Oper. Res..

[36]  Miguel J. Bagajewicz,et al.  Managing financial risk in planning under uncertainty , 2004 .

[37]  Augusto Q. Novais,et al.  An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty , 2007, Eur. J. Oper. Res..

[38]  T. Comes,et al.  A critical review on supply chain risk – Definition, measure and modeling ☆ , 2015 .

[39]  Mark Goh,et al.  Production , Manufacturing and Logistics A stochastic model for risk management in global supply chain networks , 2007 .

[40]  Christopher S. Tang Perspectives in supply chain risk management , 2006 .

[41]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[42]  Mir Saman Pishvaee,et al.  A robust optimization approach to closed-loop supply chain network design under uncertainty , 2011 .