Tides on Satellites of Giant Planets
暂无分享,去创建一个
[1] T. Johnson,et al. Io: Volcanic thermal sources and global heat flow , 2012 .
[2] S. Charnoz,et al. STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.
[3] C. Sotin,et al. Is Titan's shape caused by its meteorology and carbon cycle? , 2012 .
[4] S. Charnoz,et al. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.
[5] V. Lainey,et al. The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .
[6] M. Efroimsky. Bodily tides near spin–orbit resonances , 2011, 1105.6086.
[7] Ö. Karatekin,et al. Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit , 2011 .
[8] J. Pearl,et al. High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .
[9] R. Canup,et al. Origin of a partially differentiated Titan , 2010 .
[10] S. Asmar,et al. Geophysical Implications Of The Long-wavelength Topography Of Rhea And Europa , 2010 .
[11] Julie C. Castillo-Rogez,et al. Evolution of Titan's rocky core constrained by Cassini observations , 2010 .
[12] P. Thomas. Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission , 2010 .
[13] R. Pappalardo,et al. Preface : Satellites of the Outer Solar System: Exchange Processes Involving the Interiors () , 2010 .
[14] C. Sotin,et al. Environments in the Outer Solar System , 2010 .
[15] C. Sotin,et al. Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites , 2010 .
[16] Luciano Iess,et al. Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.
[17] R. Greenberg. The icy Jovian satellites after the Galileo mission , 2010 .
[18] F. Nimmo,et al. Shell thickness variations and the long-wavelength topography of Titan , 2010 .
[19] Ö. Karatekin,et al. Librational response of Enceladus , 2010 .
[20] Larry W. Esposito,et al. Saturn from Cassini-Huygens , 2009 .
[21] P. Helfenstein,et al. Geological implications of a physical libration on Enceladus , 2009 .
[22] J. Arlot,et al. Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.
[23] G. Schubert. Planetary science: Io's escape , 2009, Nature.
[24] R. Greenberg. FREQUENCY DEPENDENCE OF TIDAL Q , 2009 .
[25] Keke Zhang,et al. Constraints on the location, magnitude, and dimensions of Ganymede's mass anomalies , 2009 .
[26] Ralph Lorenz,et al. Size and Shape of Saturn's Moon Titan , 2009, Science.
[27] E. Yu. Aleshkina,et al. Synchronous spin-orbital resonance locking of large planetary satellites , 2009 .
[28] Angioletta Coradini,et al. Photometric changes on Saturn's Titan: Evidence for active cryovolcanism , 2009 .
[29] R. Tyler. Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.
[30] B. Schaefer,et al. Nereid: Light curve for 1999–2006 and a scenario for its variations , 2008, 0804.2835.
[31] S. Asmar,et al. Can Cassini detect a subsurface ocean in Titan from gravity measurements , 2008 .
[32] James G. Williams,et al. Tidal torques: a critical review of some techniques , 2008, 0803.3299.
[33] L. Iess,et al. A non‐hydrostatic Rhea , 2008 .
[34] J. Wisdom. Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .
[35] H. Hussmann,et al. Tidal friction in close-in satellites and exoplanets: The Darwin theory re-visited , 2007, 0712.1156.
[36] B. Levrard. A proof that tidal heating in a synchronous rotation is always larger than in an asymptotic nonsynchronous rotation state , 2007, 0710.5651.
[37] J. Burns,et al. Shapes of the saturnian icy satellites and their significance , 2007 .
[38] V. Lainey,et al. Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.
[39] J. Wisdom,et al. Tidal heating in Enceladus , 2007 .
[40] C. Sotin,et al. Iapetus’ geophysics : rotation rate, shape, and equatorial ridge , 2007 .
[41] Roberto Orosei,et al. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper , 2007 .
[42] David E. Smith,et al. Tides on Europa, and the thickness of Europa's icy shell , 2006 .
[43] T. Spohn,et al. Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .
[44] W. McKinnon. On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .
[45] Rosaly M. C. Lopes,et al. Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.
[46] G. Neukum,et al. Cassini Observes the Active South Pole of Enceladus , 2006, Science.
[47] Gabriel Tobie,et al. Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .
[48] R. Jaumann,et al. Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan , 2005, Nature.
[49] J. Wisdom. Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .
[50] L. Travis,et al. Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument , 2004 .
[51] R. Greenberg,et al. Tidal Stress Patterns on Europa's Crust , 2003 .
[52] Gabriel Tobie,et al. Tidally heated convection: Constraints on Europa's ice shell thickness , 2003 .
[53] G. Schubert,et al. The tidal response of Ganymede and Callisto with and without liquid water oceans , 2003 .
[54] D. Lin,et al. Tidal Dissipation in Rotating Giant Planets , 2003, astro-ph/0310218.
[55] S. Peale. Tidally Induced Volcanism , 2003 .
[56] W. Moore. Tidal heating and convection in Io , 2003 .
[57] A. McEwen. Active Volcanism on Io , 2002, Science.
[58] Hauke Hussmann,et al. Thermal Equilibrium States of Europa's Ice Shell: Implications for Internal Ocean Thickness and Surface Heat Flow , 2002 .
[59] A. McEwen,et al. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission , 2001 .
[60] J. Anderson,et al. Io's gravity field and interior structure , 2001 .
[61] J. Anderson,et al. Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .
[62] G. D. Egbert,et al. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.
[63] S. Peale. Origin and evolution of the natural satellites , 1999 .
[64] B. R. Tufts,et al. Formation of cycloidal features on Europa. , 1999, Science.
[65] C. T. Russell,et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.
[66] A. McEwen,et al. The shape of Io from Galileo limb measurements , 1998 .
[67] R. Greeley,et al. Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.
[68] B. R. Tufts,et al. Evidence for a subsurface ocean on Europa , 1998, Nature.
[69] G. Schubert,et al. Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.
[70] Renu Malhotra,et al. Tidal evolution into the Laplace resonance and the resurfacing of Ganymede , 1997 .
[71] J. D. Anderson,et al. Gravitational constraints on the internal structure of Ganymede , 1996, Nature.
[72] R. Lindzen,et al. GRAVITATIONAL TIDES IN THE OUTER PLANETS. II. INTERIOR CALCULATIONS AND ESTIMATION OF THE TIDAL DISSIPATION FACTOR , 1993 .
[73] R. H. Brown,et al. Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.
[74] D. Stevenson,et al. Thermal state of an ice shell on Europa , 1989 .
[75] C. Murray,et al. Dynamics of the Uranian and Saturnian satelite systems: A chaotic route to melting Miranda? , 1988 .
[76] M. Ross,et al. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .
[77] Francois Mignard,et al. The chaotic rotation of Hyperion , 1984 .
[78] S. Weidenschilling,et al. How fast do Galilean satellites spin , 1984 .
[79] P. Helfenstein,et al. Patterns of fracture and tidal stresses on Europa , 1983 .
[80] S. Peale,et al. The tides of Io , 1981 .
[81] F. Mignard. The lunar orbit revisited, III , 1981 .
[82] W. Ward. Orbital inclination of Iapetus and the rotation of the Laplacian plane , 1981 .
[83] H. Melosh. Tectonic patterns on a tidally distorted planet , 1980 .
[84] T V Johnson,et al. The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results , 1979, Science.
[85] Charles F. Yoder,et al. How tidal heating in Io drives the galilean orbital resonance locks , 1979, Nature.
[86] F. Mignard. The evolution of the lunar orbit revisited. I , 1979 .
[87] P. Cassen,et al. Melting of Io by Tidal Dissipation , 1979, Science.
[88] S. Dermott. Shapes and gravitational moments of satellites and asteroids , 1979 .
[89] P. Cassen,et al. Contribution of tidal dissipation to lunar thermal history. , 1978 .
[90] S. Gavrilov,et al. Love numbers of the giant planets , 1977 .
[91] G. Colombo. Cassini's second and third laws , 1966 .
[92] Peter Goldreich,et al. Spin-orbit coupling in the solar system , 1966 .
[93] W. M. Kaula. Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .
[94] T. Gold,et al. On the Eccentricity of Satellite Orbits in the Solar System , 1963 .
[95] H. Jeffreys. The Effect of Tidal Friction on Eccentricity and Inclination , 1961 .
[96] F. Meinesz. Shear patterns of the Earth's crust , 1947 .
[97] J. Castillo‐Rogez,et al. Planetary Ices Attenuation Properties , 2013 .
[98] A. Fortes. Titan’s internal structure and the evolutionary consequences , 2012 .
[99] J. Hunter Waite,et al. Titan from Cassini-Huygens , 2010 .
[100] Robert T. Pappalardo,et al. Tectonics of the Outer Planet Satellites , 2010 .
[101] R. Srama,et al. Icy Satellites: Geological Evolution and Surface Processes , 2009 .
[102] H. Hussmann. 10.15 – Interiors and Evolution of Icy Satellites , 2007 .
[103] G. Balmino. A Note on Ellipsoidal Shape and Gravitational Potential First Order Relationships in Planetary Geodesy , 2007 .
[104] Rosaly M. C. Lopes,et al. Io After Galileo: A New View of Jupiter's Volcanic Moon , 2007 .
[105] G. Schubert,et al. Interior composition, structure and dynamics of the Galilean satellites , 2004 .
[106] Timothy Edward Dowling,et al. Jupiter : the planet, satellites, and magnetosphere , 2004 .
[107] C. Murray,et al. Solar System Dynamics: Expansion of the Disturbing Function , 1999 .
[108] Thomas J. Ahrens,et al. Global earth physics a handbook of physical constants , 1995 .
[109] P. Thomas,et al. The shape and internal structure of Mimas , 1988 .
[110] V. Zharkov,et al. Models, figures, and gravitational moments of the Galilean satellites of Jupiter and icy satellites of Saturn , 1985 .
[111] S. Clark,et al. Handbook of physical constants , 1966 .
[112] Steven Soter,et al. Q in the solar system , 1966 .
[113] George Howard Darwin,et al. I. On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet , 1880, Proceedings of the Royal Society of London.