An algebraic analysis of implication in non-distributive logics
暂无分享,去创建一个
Jan Paseka | Ivan Chajda | Antonio Ledda | Helmut Langer | Davide Fazio | Kadir Emir | Jan Paseka | I. Chajda | D. Fazio | H. Langer | Antonio Ledda | Kadir Emir
[1] D. Busneag. Hilbert algebras of fractions and maximal Hilbert algebras of quotients , 1988 .
[2] Adam Grabowski,et al. Orthomodular Lattices , 2008, Formaliz. Math..
[3] An algebraic characterization of quantifiers , 1950 .
[4] Ivan Chajda,et al. The generalized orthomodularity property: configurations and pastings , 2020, J. Log. Comput..
[5] Deborah Monique,et al. Authors' addresses , 2004 .
[6] Antonio Diego,et al. Sur les Algèbres de Hilbert , 1970 .
[7] Ivan Chajda,et al. Many-valued quantum algebras , 2009 .
[8] On the Glivenko-Frink theorem for Hilbert algebras , 2007 .
[9] Jan Paseka,et al. Sectionally Pseudocomplemented Posets , 2019, Order.
[10] L. Cabrer,et al. Representation and duality for Hilbert algebras , 2009 .
[11] Notes on Hilbert Lattices , 2011 .
[12] H. Werner. A Mal’cev condition for admissible relations , 1973 .
[13] I. Chajda,et al. Orthomodular Implication Algebras , 2001 .
[14] P. V. Venkatanarasimhan,et al. Pseudo-complements in posets , 1971 .
[15] David Hilbert. Die logischen Grundlagen der Mathematik , 1922 .
[16] Jan Paseka,et al. Algebraic Aspects of Relatively Pseudocomplemented Posets , 2019, Order.
[17] Antonio Diego. Sobre algebras de Hilbert , 1961 .
[18] Ivan Chajda,et al. Congruence classes in universal algebra , 2003 .