Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials

Analytical techniques with high sensitivity and high spatial resolution are crucial for understanding the chemical properties of complex earth materials and environmental samples, and these so-called 'microprobes' have become workhorses of the geochemical community as well as important tools for environmental scientists. These microanalytical instruments are based on various forms of sample excitation and detection. They are complementary in terms of spatial resolution, element sensitivity, energy deposition and non-destructiveness. Several techniques fall in the class of methods employing charged particle excitation of X-ray fluorescence, including electron microprobe analysis (EMPA) and particle-induced X-ray emission (PIXE). EMPA is capable of {micro}m-sized spots with minimum detection limits near 100 mg kg{sup -1}. PIXE is well suited for analyses of relatively light elements with 10 mg kg{sup -1} sensitivity and {micro}m-sized spots. The relatively large energy deposited by the charged particle beam can complicate the analysis of volatile elements or induce valence state changes of redox sensitive elements. Sensitivity of these technologies is a relatively smooth function of atomic number. Other techniques are based on sample sputtering followed by mass spectrometry of the vaporized products, including secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Beam sizes are inmore » the few to tens of {micro}m range. Elemental sensitivities for SIMS are highly variable depending on ion yield, and quantification can be difficult because of matrix effects in the ion production process. SIMS and LA-ICP-MS have very high sensitivities for some elements and low sensitivity for others. These and other microanalytical techniques used in earth science research are described in Potts et al. (1995). The subject of this chapter is synchrotron X-ray fluorescence (SXRF) microprobe analysis (Horowitz and Howell 1972) and microtomography.« less

[1]  J. Congdon,et al.  Oral deformities in tadpoles (Rana catesbeiana) associated with coal ash deposition: effects on grazing ability and growth , 1996 .

[2]  R. D. Evans,et al.  Atomic Nucleus , 2020, Definitions.

[3]  S. Sutton,et al.  Transient film flow on rough fracture surfaces , 2000 .

[4]  S. Sutton,et al.  Manganese oxidation states in Gaeumannomyces-infested wheat rhizospheres probeb by micro-XANES spectroscopy , 1995 .

[5]  B. Jackson,et al.  Effects of chronic dietary exposure to trace elements on banded water snakes (Nerodia fasciata) , 2002, Environmental toxicology and chemistry.

[6]  S. Bajt,et al.  Determining manganese oxidation state in soils using X-ray absorption near-edge structure (XANES) spectroscopy , 1995 .

[7]  A. Nier,et al.  The thermal history of interplanetary dust particles collected in the Earth's stratosphere , 1993 .

[8]  Keith W. Jones,et al.  Synchrotron radiation-induced x-ray microanalysis , 1993 .

[9]  J. Bearden X-Ray Wavelengths , 1967 .

[10]  Nasa,et al.  X-Ray Microprobe Measurements of the Chemical Compositions of ALH84001 Carbonate Globules , 2002 .

[11]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[12]  D. Hunter,et al.  Applications of synchrotron-based X-ray microprobes. , 2001, Chemical reviews.

[13]  Darrell G. Schulze,et al.  Synchrotron X-Ray Techniques in Soil, Plant, and Environmental Research , 1995 .

[14]  G. Sposito,et al.  Selenate Adsorption on Alluvial Soils , 1989 .

[15]  S. Sutton,et al.  Fluid inclusions in quartz from oceanic hydrothermal specimens and the Bingham, Utah porphyry-Cu deposit: a study with PIXE and SXRF , 2001 .

[16]  Mark L. Rivers,et al.  Synchrotron X-ray fluorescence microprobe: A microanalytical instrument for trace element studies in geochemistry, cosmochemistry, and the soil and environmental sciences , 1994 .

[17]  C. Swartz,et al.  Validation of an arsenic sequential extraction method for evaluating mobility in sediments. , 2001, Environmental science & technology.

[18]  S. Sutton,et al.  Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusions using synchrotron X-ray fluorescence (SXRF) , 1995 .

[19]  S. Bajt,et al.  Selenium Redox Reactions and Transport between Ponded Waters and Sediments , 1997 .

[20]  S. Sutton,et al.  Distribution of chromium contamination and microbial activity in soil aggregates. , 2003, Journal of environmental quality.

[21]  S. Bajt,et al.  Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources , 1998 .

[22]  M. Otte,et al.  Accumulation of arsenic and zinc in the rhizosphere of wetland plants , 1995, Bulletin of environmental contamination and toxicology.

[23]  B. Jackson,et al.  Trace element speciation in largemouth bass (Micropterus salmoides) from a fly ash settling basin by liquid chromatography-ICP-MS , 2002, Analytical and bioanalytical chemistry.

[24]  W. Armstrong Aeration in Higher Plants , 1980 .

[25]  A. J. Anderson,et al.  Determination of the local structure and speciation of zinc in individual hypersaline fluid inclusions by micro-XAFS , 1995 .

[26]  H. Schreiber An electrochemical series of redox couples in silicate melts: A review and applications to geochemistry , 1987 .

[27]  Anatoly Snigirev,et al.  Parabolic refractive X-ray lenses: a breakthrough in X-ray optics , 2001 .

[28]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[29]  M. Bos,et al.  Constraints, iteration schemes and convergence criteria for concentration calculations in X-ray fluorescence spectrometry with the use of fundamental parameter methods , 1998 .

[30]  Jan W. Hopmans,et al.  Determination of phase-volume fractions from tomographic measurements in two-phase systems , 1999 .

[31]  Z. Wu,et al.  Micro-XANES with synchrotron radiation: a complementary tool of micro-PIXE and micro-SXRF for the determination of oxidation state of elements. Application to geological materials , 1999 .

[32]  S. Bajt,et al.  Mapping of selenium concentrations in soil aggregates with synchrotron X-ray fluorescence microprobe , 1994 .

[33]  S. Bajt,et al.  X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES) , 1994 .

[34]  John H. Jones,et al.  Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination , 2000 .

[35]  Tetsuya Ishikawa,et al.  Refractive X-ray lens for high pressure experiments at SPring-8 , 2001 .

[36]  R. Fairbanks,et al.  A proxy index of ENSO teleconnections , 1998, Nature.

[37]  A. H. Compton CI. The efficiency of production of fluorescent X-rays , 1929 .

[38]  S. Bajt,et al.  Redox ratios with relevant resolution: Solving an old problem by using the synchrotron microXANES probe , 1998 .

[39]  J. Fulton,et al.  An X-ray absorption fine structure study of copper(I) chloride coordination structure in water up to 325°C , 2000 .

[40]  S. Sutton,et al.  Spatial and temporal association of As and Fe species on aquatic plant roots. , 2002, Environmental science & technology.

[41]  S. Bajt,et al.  Synchrotron x‐ray fluorescence microprobe: Quantification and mapping of mixed valence state samples using micro‐XANES , 1995 .

[42]  G. Flynn,et al.  An asteroidal breccia: The anatomy of a cluster IDP , 1995 .

[43]  P. Horowitz,et al.  A Scanning X-Ray Microscope Using Synchrotron Radiation , 1972, Science.

[44]  S. Bajt,et al.  Synchrotron x-ray microprobe determination of chromate content using x-ray absorption near-edge structure , 1993 .

[45]  C. Amrhein,et al.  Factors influencing uranium reduction and solubility in evaporation pond sediments , 1999 .

[46]  R. Greegor,et al.  Strontianite in Coral Skeletal Aragonite , 1997, Science.

[47]  R. Pattrick,et al.  X-ray absorption studies of metal complexes in aqueous solution at elevated temperatures , 1996 .

[48]  Gene E. Ice,et al.  Microbeam-forming methods for synchrotron radiation , 1997 .

[49]  E. Gillam,et al.  Some problems in the analysis of steels by X-ray fluorescence , 1952 .

[50]  T. Fan,et al.  Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. , 2002, Aquatic toxicology.

[51]  S. Sutton,et al.  Fe XANES spectra of iron-rich micas , 2001 .

[52]  G. Taylor,et al.  FORMATION AND MORPHOLOGY OF AN IRON PLAQUE ON THE ROOTS OF TYPHA LATIFOLIA L. GROWN IN SOLUTION CULTURE , 1984 .

[53]  Lucy Berthoud,et al.  ANALYSIS OF INTERPLANETARY DUST , 1994 .

[54]  U. Bonse,et al.  Kirkpatrick–Baez microprobe on the basis of two linear single crystal Bragg–Fresnel lenses , 1992 .

[55]  D. H. Maylotte,et al.  A Study of the K-edge Absorption Spectra of Selected Vanadium Compounds. , 1984 .

[56]  Sadao Aoki,et al.  Development of a scanning x‐ray microprobe with synchrotron radiation , 1989 .

[57]  T. Illangasekare,et al.  A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations , 1997 .

[58]  Bingxin X. Yang,et al.  GeoCARS microfocusing Kirkpatrick-Baez mirror bender development , 1995 .

[59]  S. Bajt,et al.  A microbeam XAFS study of aqueous chlorozinc complexing to 430 degrees C in fluid inclusions from the Knaumuehle granitic pegmatite, Saxonian granulite massif, Germany , 1998 .

[60]  S. Hart,et al.  An ion probe study of annual cycles of Sr/Ca and other trace elements in corals , 1996 .

[61]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[62]  J. Beck,et al.  Sea-Surface Temperature from Coral Skeletal Strontium/Calcium Ratios , 1992, Science.

[63]  S. Bajt,et al.  Selenium Diffusion and Reduction at the Water−Sediment Boundary: Micro-XANES Spectroscopy of Reactive Transport , 1998 .

[64]  D. Mogk,et al.  Surface sulfur measurements on stratospheric particles , 1985 .

[65]  P. Dhez,et al.  Instrumental aspects of x-ray microbeams in the range above 1 keV , 1999 .

[66]  Mourad Idir,et al.  First test of the scanning X-ray microprobe with Bragg-Fresnel multilayer lens at ESRF beam line , 1995 .

[67]  T. Hansteen,et al.  Synchrotron-XRF microprobe analysis of silicate reference standards using fundamental-parameter quantification , 2000 .

[68]  Jan W. Hopmans,et al.  X-ray Tomography of Soil Water Distribution in One-Step Outflow Experiments , 1992 .

[69]  A. Simionovici,et al.  Mapping trace-metal (Cu, Zn, As) distribution in a single fluid inclusion using a third generation synchrotron light source , 2001 .

[70]  S. Sutton,et al.  In situ Chemical Speciation of Uranium in Soils and Sediments by Micro X-ray Absorption Spectroscopy. , 1994, Environmental science & technology.

[71]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[72]  S. Sutton,et al.  Copper speciation in vapor-phase fluid inclusions from the Mole Granite, Australia , 2002 .

[73]  B. Lai,et al.  Nanometer focusing of hard x rays by phase zone plates , 1999 .

[74]  B. Dobson,et al.  An X-ray absorption (EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350°C , 1996 .

[75]  S. Sutton,et al.  Strontium heterogeneity and speciation in coral aragonite: implications for the strontium paleothermometer , 2001 .

[76]  B. Jackson,et al.  Effects of food ration on survival and sublethal responses of lake chubsuckers (Erimyzon sucetta) exposed to coal combustion wastes. , 2002, Aquatic toxicology.

[77]  R. W. Fink,et al.  X-Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities , 1972 .

[78]  J. Bearden,et al.  REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS. , 1967 .

[79]  Loucks,et al.  Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions , 1999, Science.

[80]  L. S. Birks,et al.  Versatile x-ray analysis program combining fundamental parameters and empirical coefficients , 1978 .

[81]  M Newville,et al.  Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. , 2001, Environmental science & technology.

[82]  Y. Kagoshima,et al.  Scanning hard X-ray microscope with tantalum phase zone plate at the Hyogo-BL (BL24XU) of SPring-8 , 2001 .

[83]  M. Chukalina,et al.  X-ray fluorescence micro-tomography of an individual fluid inclusion using a third generation synchrotron light source , 2001 .

[84]  Peter J. Eng,et al.  Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff , 1999 .

[85]  J. Eiler,et al.  Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis , 2002 .

[86]  H. V. Lauer,et al.  Letter. A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorite ALH84001 , 2001 .

[87]  Donald H. Bilderback,et al.  Microbeam generation with capillary optics (invited) , 1995 .

[88]  A. H. Bond,et al.  Redox speciation of plutonium , 1997 .

[89]  S. Messenger Identification of molecular-cloud material in interplanetary dust particles , 2000, Nature.

[90]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[91]  S. Sutton,et al.  Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. , 1999, Journal of synchrotron radiation.

[92]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[93]  G. Flynn,et al.  Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating , 1992 .

[94]  C. Ryan,et al.  Segregation of ore metals between magmatic brine and vapor; a fluid inclusion study using PIXE microanalysis , 1992 .

[95]  P. Mitchell,et al.  A Comparative Study of the Speciation and Behaviour of Plutonium in the Marine Environment of Two Reprocessing Plants , 1996 .

[96]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[97]  J. Lowenstern,et al.  Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase , 1991, Science.

[98]  P. Bertsch,et al.  Characterization of complex mineral assemblages: implications for contaminant transport and environmental remediation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Snigirev,et al.  Testing of submicrometer fluorescence microprobe based on Bragg–Fresnel crystal optics at the ESRF , 1995 .

[100]  P. Potts Microprobe techniques in the earth sciences , 1995 .

[101]  D. Bilderback,et al.  X-ray tests of microfocusing mono-capillary optic for protein crystallography , 2001 .

[102]  N. Allison Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand , 1996 .

[103]  Mark L. Rivers,et al.  Using X-ray computed tomography in hydrology: systems, resolutions, and limitations , 2002 .

[104]  Sally J. Marshall,et al.  The X-ray tomographic microscope: Three-dimensional perspectives of evolving microstructures , 1994 .

[105]  S. Sutton,et al.  Micro-XAS studies with sorbed plutonium on tuff. , 1999, Journal of Synchrotron Radiation.