Implementing nonprojective measurements via linear optics: An approach based on optimal quantum-state discrimination

We discuss the problem of implementing generalized measurements [positive operator-valued measures (POVMs)] with linear optics, either based upon a static linear array or including conditional dynamics. In our approach, a given POVM shall be identified as a solution to an optimization problem for a chosen cost function. We formulate a general principle: the implementation is only possible if a linear-optics circuit exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing the corresponding quantum states. The general principle enables us, for instance, to derive a set of necessary conditions for the linear-optics implementation of the POVM that realizes the quantum mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends our previous results on projection measurements and the exact discrimination of orthogonal states.

[1]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[2]  P. Raynal,et al.  Optimal unambiguous state discrimination of two density matrices: Lower bound and class of exact sol , 2005 .

[3]  Stephen D Bartlett,et al.  Demonstrating superior discrimination of locally prepared states using nonlocal measurements. , 2005, Physical review letters.

[4]  U. Herzog,et al.  Optimum unambiguous discrimination of two mixed quantum states , 2005, quant-ph/0502117.

[5]  N. Lutkenhaus,et al.  Implementation of projective measurements with linear optics and continuous photon counting , 2004, quant-ph/0410133.

[6]  J. Eisert Optimizing linear optics quantum gates. , 2004, Physical review letters.

[7]  M. Payne,et al.  General implementation of all possible positive-operator-value measurements of single-photon polarization states , 2004, quant-ph/0408011.

[8]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[9]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[10]  Norbert Luetkenhaus,et al.  Upper bounds on success probabilities in linear optics , 2004, quant-ph/0403103.

[11]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[12]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[13]  Masoud Mohseni,et al.  Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. , 2004, Physical review letters.

[14]  Simple criteria for the implementation of projective measurements with linear optics , 2003, quant-ph/0304057.

[15]  M. Payne,et al.  Nonorthogonal projective positive-operator-value measurement of photon polarization states with unit probability of success , 2004 .

[16]  Anthony Chefles,et al.  Quantum states: Discrimination and classical information transmission. A review of experimental progress , 2004 .

[17]  Andrew G. White,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[18]  E. Knill Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics , 2003, quant-ph/0307015.

[19]  Kae Nemoto,et al.  Measurement-induced nonlinearity in linear optics , 2003, quant-ph/0305082.

[20]  T. Rudolph,et al.  Unambiguous discrimination of mixed states , 2003, quant-ph/0303071.

[21]  E. Knill,et al.  Quantum gates using linear optics and postselection , 2002 .

[22]  S. V. Enk,et al.  Unambiguous State Discrimination of Coherent States with Linear Optics: Application to Quantum Cryptography , 2002, quant-ph/0207138.

[23]  M. J. Fitch,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[24]  J. Bergou,et al.  Optimum unambiguous discrimination between subsets of nonorthogonal quantum states , 2001, quant-ph/0112051.

[25]  J. Calsamiglia Generalized measurements by linear elements , 2001, quant-ph/0108108.

[26]  Gerard J. Milburn,et al.  Simple scheme for efficient linear optics quantum gates , 2001 .

[27]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[28]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[29]  J. Bergou,et al.  Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization , 2000, quant-ph/0012131.

[30]  S. Barnett,et al.  Experimental demonstration of optimal unambiguous state discrimination , 2000, quant-ph/0007063.

[31]  N. Lutkenhaus,et al.  Maximum efficiency of a linear-optical Bell-state analyzer , 2000, quant-ph/0007058.

[32]  János A. Bergou,et al.  Non-unitary transformations in quantum mechanics: An optical realization , 2000 .

[33]  S. Lloyd,et al.  Quantum Computation over Continuous Variables , 1998, quant-ph/9810082.

[34]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[35]  N. Yoran,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[36]  Gisin,et al.  Unambiguous quantum measurement of nonorthogonal states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[37]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[38]  A. Peres How to differentiate between non-orthogonal states , 1988 .

[39]  D. Dieks Overlap and distinguishability of quantum states , 1988 .

[40]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[41]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.