Optimization of interval type-2 fuzzy systems for image edge detection

The optimization of the antecedent parameters for a type 2 fuzzy system of edge detection is presented.The goal of interval type-2 fuzzy logic in edge detection methods is to provide the ability to handle uncertainty.Results show that the Cuckoo search provides better results in optimizing the type-2 fuzzy system. This paper presents the optimization of a fuzzy edge detector based on the traditional Sobel technique combined with interval type-2 fuzzy logic. The goal of using interval type-2 fuzzy logic in edge detection methods is to provide them with the ability to handle uncertainty in processing real world images. However, the optimal design of fuzzy systems is a difficult task and for this reason the use of meta-heuristic optimization techniques is also considered in this paper. For the optimization of the fuzzy inference systems, the Cuckoo Search (CS) and Genetic Algorithms (GAs) are applied. Simulation results show that using an optimal interval type-2 fuzzy system in conjunction with the Sobel technique provides a powerful edge detection method that outperforms its type-1 counterparts and the pure original Sobel technique.

[1]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[2]  K. S. Tang,et al.  Genetic Algorithms: Concepts and Designs with Disk , 1999 .

[3]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[4]  Patricia Melin,et al.  A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral , 2009, Inf. Sci..

[5]  G. Zaslavsky,et al.  Lévy Flights and Related Topics in Physics , 2013 .

[6]  Oscar Castillo,et al.  An Interval Type-2 Fuzzy Logic Toolbox for Control Applications , 2007, 2007 IEEE International Fuzzy Systems Conference.

[7]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[8]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[9]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[10]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[11]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[12]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[13]  Patricia Melin,et al.  Interval type‐2 fuzzy logic for edges detection in digital images , 2009, Int. J. Intell. Syst..

[14]  W. TanW.,et al.  Uncertain Rule-Based Fuzzy Logic Systems , 2007 .

[15]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[16]  M. Shlesinger Mathematical physics: Search research , 2006, Nature.

[17]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[18]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[19]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[20]  William K. Pratt,et al.  Digital Image Processing: PIKS Inside , 2001 .

[21]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[22]  I.K. Saha Stability Analysis of the Ant System Dynamics with Non-uniform Pheromone Deposition Rules , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[25]  Yongquan Zhou,et al.  A Novel Complex Valued Cuckoo Search Algorithm , 2013, TheScientificWorldJournal.

[26]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[27]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[28]  Xin-She Yang,et al.  Cuckoo search for business optimization applications , 2012, 2012 NATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION SYSTEMS.

[29]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[30]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  R A Kirsch,et al.  Computer determination of the constituent structure of biological images. , 1971, Computers and biomedical research, an international journal.

[32]  Clifford T. Brown,et al.  Lévy Flights in Dobe Ju/’hoansi Foraging Patterns , 2007 .

[33]  O. Mendoza,et al.  Interval type-2 fuzzy logic for image edge detection quality evaluation , 2012, 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS).

[34]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[35]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[36]  Oscar Castillo,et al.  A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition , 2014, Appl. Soft Comput..

[37]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[38]  Ranita Biswas,et al.  An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets , 2012 .

[39]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[40]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms: Second Edition , 2010 .

[41]  Slawomir Zak,et al.  Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.

[42]  Patricia Melin,et al.  Interval type-2 fuzzy logic for edges detection in digital images , 2009, HIS 2009.

[43]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[44]  Oscar Castillo,et al.  An improved method for edge detection based on interval type-2 fuzzy logic , 2010, Expert Syst. Appl..