A Pseudoproxy Evaluation of Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate Field Reconstructions over Europe

A pseudoproxy comparison is presented for two statistical methods used to derive annual climate field reconstructions (CFRs) for Europe. The employed methods use the canonical correlation analysis (CCA) procedure presented by Smerdon et al. and the Bayesian hierarchical model (BHM) method adopted from Tingley and Huybers. Pseudoproxy experiments (PPEs) are constructed from modeled temperature data sampled from the 1250-yr paleo-run of the NCAR Community Climate System Model (CCSM) version 1.4 model by Ammann et al. Pseudoproxies approximate the distribution of the multiproxy network used by Mann et al. over the European region of interest. Gaussian white noise is added to the temperature data to mimic the combined signal and noise properties of real-world proxies. Results indicate that, while both methods perform well in areas with good proxy coverage, the BHM method outperforms the CCA method across the entire field and additionally returns objective error estimates.

[1]  David Frank,et al.  Orbital forcing of tree-ring data , 2012 .

[2]  J. Smerdon,et al.  Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise‐only predictors , 2012 .

[3]  Martin P. Tingley,et al.  A Bayesian ANOVA Scheme for Calculating Climate Anomalies, with Applications to the Instrumental Temperature Record , 2012 .

[4]  Christian Ohlwein,et al.  Review of probabilistic pollen-climate transfer methods , 2012 .

[5]  Michael N. Evans,et al.  Comparison of observed and simulated tropical climate trends using a forward model of coral δ 18O , 2011 .

[6]  Eduardo Zorita,et al.  Spatial performance of four climate field reconstruction methods targeting the Common Era , 2011 .

[7]  M. Hughes,et al.  An efficient forward model of the climate controls on interannual variation in tree-ring width , 2011 .

[8]  H. Wanner,et al.  Multidecadal changes in winter circulation-climate relationship in Europe: frequency variations, within-type modifications, and long-term trends , 2011 .

[9]  H. Wanner,et al.  2500 Years of European Climate Variability and Human Susceptibility , 2011, Science.

[10]  Caspar M. Ammann,et al.  Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0) , 2011 .

[11]  Murali Haran,et al.  Piecing together the past: statistical insights into paleoclimatic reconstructions , 2010 .

[12]  J. Smerdon,et al.  Reply to “Comments on ‘Erroneous Model Field Representations in Multiple Pseudoproxy Studies: Corrections and Implications’” , 2010 .

[13]  E. Zorita,et al.  A regional climate simulation over the Iberian Peninsula for the last millennium , 2010 .

[14]  J. Smerdon,et al.  A Pseudoproxy Evaluation of the CCA and RegEM Methods for Reconstructing Climate Fields of the Last Millennium , 2010 .

[15]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[16]  D. Nychka,et al.  The Value of Multiproxy Reconstruction of Past Climate , 2010 .

[17]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[18]  H. Wanner,et al.  The science and strategy of the Past Global Changes (PAGES) project , 2010 .

[19]  W. Landman Climate change 2007: the physical science basis , 2010 .

[20]  Axel Timmermann,et al.  Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation , 2010 .

[21]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems , 2010 .

[22]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part II: Comparison with the Regularized Expectation–Maximization Algorithm , 2010 .

[23]  C. Corona,et al.  Growing Season Temperatures in Europe and Climate Forcings Over the Past 1400 Years , 2010, PloS one.

[24]  F. J. Gonzalez-Rouco,et al.  Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models , 2010 .

[25]  Hugues Goosse,et al.  Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium , 2009 .

[26]  Bo Christiansen,et al.  A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness , 2009 .

[27]  Heinz Wanner,et al.  Comparison of climate field reconstruction techniques: application to Europe , 2009 .

[28]  E. Mosley‐Thompson,et al.  High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects , 2009 .

[29]  Alexey Kaplan,et al.  On the Origin of the Standardization Sensitivity in RegEM Climate Field Reconstructions , 2008 .

[30]  H. Wanner,et al.  The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750 , 2008 .

[31]  J. Smerdon,et al.  Pacific and Indian Ocean climate signals in a tree‐ring record of Java monsoon drought , 2008 .

[32]  Eugene R. Wahl,et al.  Reply to comment by Jason E. Smerdon et al. on “Robustness of proxy‐based climate field reconstruction methods” , 2008 .

[33]  Francis W. Zwiers,et al.  Evaluation of proxy-based millennial reconstruction methods , 2008 .

[34]  F. Loewe A period of warm winters in Western Greenland and the temperature see‐saw between Western Greenland and Central Europe , 2007 .

[35]  Eugene R. Wahl,et al.  Reply to comment by Jason E. Smerdon et al. on “Robustness of proxy‐based climate field reconstruction methods” , 2008 .

[36]  Annette Menzel,et al.  Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts , 2007 .

[37]  Eduardo Zorita,et al.  Testing a European winter surface temperature reconstruction in a surrogate climate , 2007 .

[38]  F. Joos,et al.  Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model , 2007, Proceedings of the National Academy of Sciences.

[39]  G. Hegerl,et al.  Detection of Human Influence on a New, Validated 1500-Year Temperature Reconstruction , 2007 .

[40]  Thomas Stemler,et al.  Stochastic modeling of experimental chaotic time series. , 2007, Physical review letters.

[41]  Malcolm K. Hughes,et al.  A forward modeling approach to paleoclimatic interpretation of tree‐ring data , 2006 .

[42]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[43]  Gerald R. North,et al.  Surface Temperature Reconstructions for the Last 1000 Years , 2006 .

[44]  H. Wanner,et al.  Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation , 2006 .

[45]  Eduardo Zorita,et al.  Simulation and inversion of borehole temperature profiles in surrogate climates: Spatial distribution and surface coupling , 2006 .

[46]  Heiko Paeth,et al.  European spring and autumn temperature variability and change of extremes over the last half millennium , 2005, Geophysical Research Letters.

[47]  G. Pichard,et al.  Last-millennium summer-temperature variations in western Europe based on proxy data , 2005 .

[48]  David Frank,et al.  Effect of scaling and regression on reconstructed temperature amplitude for the past millennium , 2005 .

[49]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[50]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[51]  H. Wanner,et al.  European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500 , 2004, Science.

[52]  E. Zorita,et al.  Deep soil temperature as proxy for surface air‐temperature in a coupled model simulation of the last thousand years , 2003 .

[53]  H. Wanner,et al.  Evaluation of proxies for European and North Atlantic temperature field reconstructions , 2003 .

[54]  H. Kantz,et al.  Nonequilibrium physics meets time series analysis: Measuring probability currents from data , 2003 .

[55]  Alexander B. Neiman,et al.  Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments , 2003 .

[56]  H. Wanner,et al.  Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500 , 2002 .

[57]  Scott Rutherford,et al.  Climate reconstruction using ‘Pseudoproxies’ , 2001 .

[58]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[59]  P. Jones,et al.  Monthly mean pressure reconstruction for the Late Maunder Minimum Period (AD 1675-1715) , 2000 .

[60]  H. Wanner,et al.  Reconstruction of monthly NAO and EU indices back to AD 1675 , 1999 .

[61]  Mark New,et al.  Surface air temperature and its changes over the past 150 years , 1999 .

[62]  E. Cook,et al.  Drought Reconstructions for the Continental United States , 1999 .

[63]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[64]  Edward R. Cook,et al.  SPATIAL REGRESSION METHODS IN DENDROCLIMATOLOGY: A REVIEW AND COMPARISON OF TWO TECHNIQUES , 1994 .

[65]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[66]  H. Loon,et al.  The seesaw in winter temperatures between Greenland and Northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes , 1979 .

[67]  H. Loon,et al.  The Seesaw in Winter Temperatures between Greenland and Northern Europe. Part I: General Description , 1978 .

[68]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[69]  W. Steubing,et al.  Zur Theorie der Brownschen Bewegung , 1908 .

[70]  Jason E. Smerdon,et al.  Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments , 2012 .

[71]  P. Jones,et al.  Climate Change in Poland in the Past Centuries and its Relationship to European Climate: Evidence from Reconstructions and Coupled Climate Models , 2010 .

[72]  QUATERNARY SCIENCE REVIEWS , 2006 .

[73]  Carl-Heinrich-Becker-Weg Climate reconstruction by regression – 32 variations on a theme , 2005 .

[74]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[75]  H. Kantz,et al.  Fast chaos versus white noise: entropy analysis and a Fokker–Planck model for the slow dynamics , 2004 .

[76]  P. Imkeller,et al.  Stochastic climate models , 2001 .

[77]  H. Kantz,et al.  Stochastic modelling: replacing fast degrees of freedom by noise , 2001 .

[78]  M. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998 .

[79]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[80]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[81]  K. Boulding,et al.  THE NATIONAL ACADEMIES PRESS , 2017 .