Dual-Band Design of Integrated Class-J Power Amplifiers in GaAs pHEMT Technology

This paper presents two integrated concurrent dual-band class-J power amplifiers (PAs) in AlGaAs–InGaAs pHEMT technology. Design flexibility of class-J space is employed to explore the availability of a dual-band PA where the center frequency of the second band is twice the center frequency of the first band (<inline-formula> <tex-math notation="LaTeX">$f_{2}=2f_{1}$ </tex-math></inline-formula>). The theoretical formulations are developed for <inline-formula> <tex-math notation="LaTeX">$f_{2}=2f_{1}$ </tex-math></inline-formula> case, for which it is not feasible to obtain high efficiencies using class-F<sup>−1</sup>, class-F, and other high-efficiency modes. A proof of concept 5/10-GHz class-J PA is manufactured in a 0.1-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> GaAs pHEMT technology. The proposed PA delivers 26.9- and 26-dBm output power with peak power added efficiencies (PAEs) of 49% and 46% at 5 and 10 GHz, respectively. Another 6/16-GHz (<inline-formula> <tex-math notation="LaTeX">$f_{2}\neq 2f_{1}$ </tex-math></inline-formula>) dual-band concurrent class-J PA with a PAE of more than 50% in both bands is also fabricated in a 0.25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> GaAs pHEMT technology. The designed dual-band class-J PA delivers 26- and 25.5-dBm output power at 6 and 16 GHz, respectively.

[1]  P. Colantonio,et al.  A Design Technique for Concurrent Dual-Band Harmonic Tuned Power Amplifier , 2008, IEEE Transactions on Microwave Theory and Techniques.

[2]  Yong-Xin Guo,et al.  High-efficiency concurrent dual-band class-F and inverse class-F power amplifier , 2011 .

[3]  Chul Soon Park,et al.  Analysis of High-Efficiency Power Amplifier Using Second Harmonic Manipulation: Inverse Class-F/J Amplifiers , 2011, IEEE Transactions on Microwave Theory and Techniques.

[4]  Slim Boumaiza,et al.  Novel Dual-Band Matching Network for Effective Design of Concurrent Dual-Band Power Amplifiers , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Amirreza Alizadeh,et al.  A Broadband Integrated Class-J Power Amplifier in GaAs pHEMT Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[6]  Fadhel M. Ghannouchi,et al.  Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design , 2011 .

[7]  Bumman Kim,et al.  Investigation of a Class-J Power Amplifier With a Nonlinear $C_{\rm out}$ for Optimized Operation , 2010, IEEE Transactions on Microwave Theory and Techniques.

[8]  Hsien-Shun Wu,et al.  A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching , 2012, IEEE Transactions on Microwave Theory and Techniques.

[9]  J. Lees,et al.  A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA , 2009, IEEE Transactions on Microwave Theory and Techniques.

[10]  A. Akhnoukh,et al.  Adaptive Multi-Band Multi-Mode Power Amplifier Using Integrated Varactor-Based Tunable Matching Networks , 2006, IEEE Journal of Solid-State Circuits.

[11]  Hai-Peng Fu,et al.  A highly efficient concurrent dual-band class-F power amplifier for applications at 1.7 and 2.14 GHz , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[12]  Cam Nguyen,et al.  New Technique for Synthesizing Concurrent Dual-Band Impedance-Matching Filtering Networks and ${\hbox{0.18-}}\mu{\hbox {m}}$ SiGe BiCMOS 25.5/37-GHz Concurrent Dual-Band Power Amplifier , 2013, IEEE Transactions on Microwave Theory and Techniques.

[13]  Leonid Belostotski,et al.  Integrated Design of a Class-J Power Amplifier , 2013, IEEE Transactions on Microwave Theory and Techniques.

[14]  Choon Sik Cho,et al.  Concurrent Dual-Band Class-E Power Amplifier Using Composite Right/Left-Handed Transmission Lines , 2007, IEEE Transactions on Microwave Theory and Techniques.

[15]  Jangheon Kim,et al.  Saturated Power Amplifier Optimized for Efficiency Using Self-Generated Harmonic Current and Voltage , 2011, IEEE Transactions on Microwave Theory and Techniques.

[16]  Christer M. Andersson,et al.  Optimized Design of a Dual-Band Power Amplifier With SiC Varactor-Based Dynamic Load Modulation , 2015, IEEE Transactions on Microwave Theory and Techniques.

[17]  Chih-Hung Chien,et al.  A dual-band RF transceiver for multistandard WLAN applications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[18]  J. Lees,et al.  On the Continuity of High Efficiency Modes in Linear RF Power Amplifiers , 2009, IEEE Microwave and Wireless Components Letters.

[19]  Slim Boumaiza,et al.  Concurrent dual band 2.4/3.5GHz fully integrated power amplifier in 0.13µm CMOS technology , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[20]  K. Uchida,et al.  Dual-band GaAs FET power amplifier with two-frequency matching circuits , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[21]  Ping-Hsun Wu,et al.  Wi-Fi/WiMAX dual mode RF MMIC front-end module , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[22]  Fadhel M. Ghannouchi,et al.  Concurrent Dual-Band Class-F Load Coupling Network for Applications at 1.7 and 2.14 GHz , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Gholamreza Nikandish,et al.  A Harmonic Termination Technique for Single- and Multi-Band High-Efficiency Class-F MMIC Power Amplifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[24]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[25]  Shih-Ming Wang,et al.  Single-chip Dual-Mode Power Amplifier MMIC using GaAs E-pHEMT for WiMAX/WLAN Applications , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[26]  YunSeong Eo,et al.  A 2.4GHz/5.2GHz CMOS power amplifier for dual-band applications , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[27]  Ming-Lin Chuang Dual-Band Impedance Transformer Using Two-Section Shunt Stubs , 2010, IEEE Transactions on Microwave Theory and Techniques.