Equivalence principle, higher-dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics
暂无分享,去创建一个
[1] G. Jaeger. Bohmian Mechanics and Quantum Theory , 2000 .
[2] I. Vancea,et al. Duality between coordinates and Dirac field , 2000, hep-th/0002217.
[3] I. Vancea,et al. Duality of Coordinates and Matter Fields in Curved Spacetime , 1999, gr-qc/9907059.
[4] S. Goldstein,et al. Bohmian Mechanics and Quantum Theory , 2000 .
[5] David Marcus Appleby,et al. Bohmian Trajectories Post-Decoherence , 1999, quant-ph/9908029.
[6] E. Floyd,et al. Classical Limit of the Trajectory Representation of Quantum Mechanics and Residual Indeterminacy , 1999 .
[7] David Marcus Appleby,et al. Generic Bohmian Trajectories of an Isolated Particle , 1999, quant-ph/9905003.
[8] R. Carroll. Some remarks on time, uncertainty, and spin , 1999, quant-ph/9903081.
[9] A. Faraggi,et al. THE EQUIVALENCE POSTULATE OF QUANTUM MECHANICS , 1998, hep-th/9809127.
[10] A. Faraggi,et al. Equivalence principle: tunnelling, quantized spectra and trajectories from the quantum HJ equation , 1998, hep-th/9809126.
[11] A. Faraggi,et al. Equivalence Principle, Planck Length and Quantum Hamilton-Jacobi Equation , 1998, hep-th/9809125.
[12] I. Vancea. Gravity and duality between coordinates and matter fields , 1998, gr-qc/9801072.
[13] A. Faraggi,et al. Quantum Transformations , 1998, hep-th/9801033.
[14] A. Faraggi,et al. The Equivalence principle of quantum mechanics: Uniqueness theorem , 1997, hep-th/9711028.
[15] E. Floyd,et al. WHICH CAUSALITY? DIFFERENCES BETWEEN TRAJECTORY AND COPENHAGEN ANALYSES OF AN IMPULSIVE PERTURBATION , 1997, quant-ph/9708026.
[16] E. Floyd. REFLECTION TIME AND THE GOOS-HÄNCHEN EFFECT FOR REFLECTION BY A SEMI-INFINITE RECTANGULAR BARRIER , 1997, quant-ph/9708007.
[17] R. Carroll. (X, ψ) duality and enhanced dKdV on a Riemann surface , 1997, hep-th/9705229.
[18] A. Faraggi,et al. Quantum mechanics from an equivalence principle , 1997, hep-th/9705108.
[19] G. Ghirardi,et al. Bohmian Mechanics Revisited , 1997, quant-ph/9704021.
[20] E. Floyd,et al. Where and why the generalized Hamilton-Jacobi representation describes microstates of the Schrödinger wave function , 1996, quant-ph/9707051.
[21] E. Floyd. The Ermakov invariant for the trajectory representation of quantum mechanics , 1996 .
[22] James T. Cushing,et al. Bohmian mechanics and quantum theory: an appraisal , 1996 .
[23] M. Matone. Instantons and recursion relations in N = 2 SUSY gauge theory☆ , 1995, hep-th/9506102.
[24] K. Berndl,et al. On the global existence of Bohmian mechanics , 1995, quant-ph/9503013.
[25] L. Susskind. The world as a hologram , 1994, hep-th/9409089.
[26] C. R. Stephens,et al. Black hole evaporation without information loss , 1993, gr-qc/9310006.
[27] P. Holland. The de Broglie-Bohm theory of motion and quantum field theory , 1993 .
[28] P. Holland. The Quantum Theory of Motion , 1993 .
[29] Matti Vuorinen,et al. Conformal Geometry and Quasiregular Mappings , 1988 .
[30] E. Floyd,et al. Progress in a trajectory interpretation of the Klein-Gordon equation , 1988 .
[31] Floyd. Closed-form solutions for the modified potential. , 1986, Physical Review D, Particles and fields.
[32] E. Floyd. Arbitrary initial conditions of nonlocal hidden variables , 1984 .
[33] E. Floyd. Modified potential and Bohm's quantum-mechanical potential , 1982 .
[34] E. Floyd. Bohr-Sommerfeld quantization with the effective action variable , 1982 .
[35] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.
[36] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .