On Herbrand's Theorem for Intuitionistic Logic

In this paper we reduce the question of validity of a first-order intuitionistic formula without equality to generating ground instances of this formula and then checking whether the instances are deducible in a propositional intuitionistic tableaux calculus, provided that the propositional proof is compatible with the way how the instances were generated. This result can be seen as a form of the Herbrand theorem, and so it provides grounds for further theoretical investigation of computer-oriented intuitionistic calculi.

[1]  Christoph Kreitz,et al.  Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..

[2]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[3]  Boris Konev,et al.  Tableau Method with Free Variables for Intuitionistic Logic , 2006, Intelligent Information Systems.

[4]  Christoph Kreitz,et al.  A Uniform Proof Procedure for Classical and Non-Classical Logics , 1996, KI.

[5]  Steve Reeves,et al.  Semantic tableaux as a framework for automated theorem-proving , 1987 .

[6]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[7]  Arild Waaler,et al.  Tableaux for Intuitionistic Logics , 1999 .

[8]  Melvin Fitting,et al.  A Modal Herbrand Theorem , 1996, Fundam. Informaticae.

[9]  S. Yu Maslov An Inverse Method for Establishing Deducibility of Nonprenex Formulas of the Predicate Calculus , 1967 .

[10]  Jens Otten ileanTAP: An Intuitionistic Theorem Prover , 1997, TABLEAUX.

[11]  Andrei Voronkov Proof-Search in Intuitionistic Logic Based on Constraint Satisfaction , 1996, TABLEAUX.

[12]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[13]  Natarajan Shankar,et al.  Proof Search in the Intuitionistic Sequent Calculus , 1992, CADE.

[14]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[15]  Reiner Hähnle,et al.  Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.

[16]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[17]  Alexander V. Lyaletski Sequent forms of Herbrand theorem and their applications , 2005, Annals of Mathematics and Artificial Intelligence.

[18]  Wolfgang Bibel,et al.  leanCoP: lean connection-based theorem proving , 2003, J. Symb. Comput..

[19]  Kenneth A. Bowen An Herbrand theorem for prenex formulas of LJ , 1976, Notre Dame J. Formal Log..

[20]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[21]  Jens Otten,et al.  A Connection Based Proof Method for Intuitionistic Logic , 1995, TABLEAUX.

[22]  Matthias Baaz,et al.  The Skolemization of existential quantifiers in intuitionistic logic , 2006, Ann. Pure Appl. Log..

[23]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .