On Herbrand's Theorem for Intuitionistic Logic
暂无分享,去创建一个
[1] Christoph Kreitz,et al. Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..
[2] Roy Dyckhoff,et al. Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.
[3] Boris Konev,et al. Tableau Method with Free Variables for Intuitionistic Logic , 2006, Intelligent Information Systems.
[4] Christoph Kreitz,et al. A Uniform Proof Procedure for Classical and Non-Classical Logics , 1996, KI.
[5] Steve Reeves,et al. Semantic tableaux as a framework for automated theorem-proving , 1987 .
[6] Lincoln A. Wallen,et al. Automated deduction in nonclassical logics , 1990 .
[7] Arild Waaler,et al. Tableaux for Intuitionistic Logics , 1999 .
[8] Melvin Fitting,et al. A Modal Herbrand Theorem , 1996, Fundam. Informaticae.
[9] S. Yu Maslov. An Inverse Method for Establishing Deducibility of Nonprenex Formulas of the Predicate Calculus , 1967 .
[10] Jens Otten. ileanTAP: An Intuitionistic Theorem Prover , 1997, TABLEAUX.
[11] Andrei Voronkov. Proof-Search in Intuitionistic Logic Based on Constraint Satisfaction , 1996, TABLEAUX.
[12] Dov M. Gabbay,et al. Chapter 13 – Labelled Deductive Systems , 2003 .
[13] Natarajan Shankar,et al. Proof Search in the Intuitionistic Sequent Calculus , 1992, CADE.
[14] Jacques Herbrand. Recherches sur la théorie de la démonstration , 1930 .
[15] Reiner Hähnle,et al. Tableaux and Related Methods , 2001, Handbook of Automated Reasoning.
[16] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[17] Alexander V. Lyaletski. Sequent forms of Herbrand theorem and their applications , 2005, Annals of Mathematics and Artificial Intelligence.
[18] Wolfgang Bibel,et al. leanCoP: lean connection-based theorem proving , 2003, J. Symb. Comput..
[19] Kenneth A. Bowen. An Herbrand theorem for prenex formulas of LJ , 1976, Notre Dame J. Formal Log..
[20] Lawrence J. Henschen,et al. What Is Automated Theorem Proving? , 1985, J. Autom. Reason..
[21] Jens Otten,et al. A Connection Based Proof Method for Intuitionistic Logic , 1995, TABLEAUX.
[22] Matthias Baaz,et al. The Skolemization of existential quantifiers in intuitionistic logic , 2006, Ann. Pure Appl. Log..
[23] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .