Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus

A new method for compression of quantum computing algorithms, based on ZX-calculus, greatly reduces the resources required to realize fault-tolerant quantum circuits.

[1]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[2]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[3]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[4]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[5]  Miriam Backens,et al.  The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.

[6]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[7]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[8]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[9]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[10]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[11]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[12]  Austin G. Fowler,et al.  Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.

[13]  Stefan Zohren,et al.  Graphical structures for design and verification of quantum error correction , 2016, Quantum Science and Technology.

[14]  Alexandru Paler,et al.  Design Methods for Reliable Quantum Circuits , 2015 .

[15]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[16]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[17]  Simon J. Devitt,et al.  Synthesis of topological quantum circuits , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[18]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[19]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Dominic Horsman,et al.  Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.

[21]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[22]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[23]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[24]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[25]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[26]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[27]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[28]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[29]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[30]  Margaret Martonosi,et al.  Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[31]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[32]  Dominic Horsman,et al.  The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.

[33]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[34]  Cody Jones,et al.  Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..

[35]  Quanlong Wang,et al.  ZX-Rules for 2-Qubit Clifford+T Quantum Circuits , 2018, RC.

[36]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[37]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[38]  Miriam Backens,et al.  Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.

[39]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[40]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[41]  Aleks Kissinger,et al.  PyZX: Large Scale Automated Diagrammatic Reasoning , 2019, Electronic Proceedings in Theoretical Computer Science.

[42]  Aleks Kissinger,et al.  Reducing the number of non-Clifford gates in quantum circuits , 2020, Physical Review A.

[43]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[44]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[45]  Austin G. Fowler,et al.  Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.

[46]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[47]  Simon J. Devitt,et al.  Specification format and a verification method of fault-tolerant quantum circuits , 2017, Physical Review A.

[48]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[49]  Robert Wille,et al.  Online scheduled execution of quantum circuits protected by surface codes , 2017, Quantum Inf. Comput..