Effective Compression of Quantum Braided Circuits Aided by ZX-Calculus
暂无分享,去创建一个
Michael Hanks | Marta P. Estarellas | William J. Munro | Kae Nemoto | W. Munro | K. Nemoto | M. Hanks | M. Estarellas
[1] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[2] Sean D Barrett,et al. Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.
[3] Austin G. Fowler,et al. Topological cluster state quantum computing , 2008, Quantum Inf. Comput..
[4] Michael H. Freedman,et al. Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..
[5] Miriam Backens,et al. The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.
[6] Adam Paetznick,et al. Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.
[7] J. Preskill,et al. Topological quantum memory , 2001, quant-ph/0110143.
[8] Austin G. Fowler,et al. Surface code quantum computing by lattice surgery , 2011, 1111.4022.
[9] Robert Raussendorf,et al. Topological fault-tolerance in cluster state quantum computation , 2007 .
[10] H. Briegel,et al. Measurement-based quantum computation , 2009, 0910.1116.
[11] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[12] Austin G. Fowler,et al. Efficient magic state factories with a catalyzed|CCZ⟩to2|T⟩transformation , 2018, Quantum.
[13] Stefan Zohren,et al. Graphical structures for design and verification of quantum error correction , 2016, Quantum Science and Technology.
[14] Alexandru Paler,et al. Design Methods for Reliable Quantum Circuits , 2015 .
[15] Cody Jones,et al. Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.
[16] A. Fowler,et al. High-threshold universal quantum computation on the surface code , 2008, 0803.0272.
[17] Simon J. Devitt,et al. Synthesis of topological quantum circuits , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).
[18] Cody Jones,et al. Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.
[19] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] Dominic Horsman,et al. Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.
[21] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[22] A. Kitaev,et al. Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.
[23] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[24] I. Chuang,et al. Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.
[25] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[26] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[27] B. Coecke. Quantum picturalism , 2009, 0908.1787.
[28] Benjamin J. Brown,et al. Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.
[29] Bryan Eastin,et al. Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.
[30] Margaret Martonosi,et al. Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures , 2018, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[31] A. Doherty,et al. Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.
[32] Dominic Horsman,et al. The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.
[33] Emanuel Knill,et al. Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..
[34] Cody Jones,et al. Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..
[35] Quanlong Wang,et al. ZX-Rules for 2-Qubit Clifford+T Quantum Circuits , 2018, RC.
[36] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[37] Austin G. Fowler,et al. Time-optimal quantum computation , 2012, 1210.4626.
[38] Miriam Backens,et al. Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.
[39] Daniel Litinski,et al. Magic State Distillation: Not as Costly as You Think , 2019, Quantum.
[40] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[41] Aleks Kissinger,et al. PyZX: Large Scale Automated Diagrammatic Reasoning , 2019, Electronic Proceedings in Theoretical Computer Science.
[42] Aleks Kissinger,et al. Reducing the number of non-Clifford gates in quantum circuits , 2020, Physical Review A.
[43] A. Fowler,et al. A bridge to lower overhead quantum computation , 2012, 1209.0510.
[44] T. M. Stace,et al. Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.
[45] Austin G. Fowler,et al. Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.
[46] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[47] Simon J. Devitt,et al. Specification format and a verification method of fault-tolerant quantum circuits , 2017, Physical Review A.
[48] Daniel Litinski,et al. A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.
[49] Robert Wille,et al. Online scheduled execution of quantum circuits protected by surface codes , 2017, Quantum Inf. Comput..