Static Schwinger-level threshold electric field nonlinearities and their significance to photons and chaos.

In this work we postulate that Schwinger's threshold for a dynamic electric field intensity to induce spatial nonlinearity is a special case and, more generally, it is the threshold field for both static and dynamic electric fields. Fields of this magnitude induce negative energy charges to adapt positive energy attributes; within an atom they also support inter-state energy transfers and intra-state chaotic mixing of time-varying fields. Nonlinearity-induced chaos forms the basis for the probabilistic nature of photon creation. Answers to physical problems at atomic and lower scales continuously evolve because chaotic-like electron movements change their configurations on a time scale of 10 zs. Within atoms, frequency mixing that creates an optical frequency field occurs in the nonlinear region surrounding the nucleus. On a probabilistic basis a ring of vacuum charge can be induced that forms into an equivalent waveguide that confines the energy as it travels permanently away from the atom. The propagating relativistically augmented fields losslessly induce charges that bind and protect the energy carrying fields. The photon charge-field ensemble, which we show is localizable, is thermodynamically closed and possesses all first-order photon properties including zero rest mass and permanent stability. For near neighbor photons traveling at a speed approaching c we find a small, constant, attractive force between photons with circularly antiparallel polarization.

[1]  N. Petrov Speed of structured light pulses in free space , 2019, Scientific Reports.

[2]  S. Vintskevich,et al.  Structured light pulses and their Lorentz-invariant mass , 2019, Laser Physics.

[3]  Zuowei Liu,et al.  Probing millicharge at BESIII via monophoton searches , 2018, Physical Review D.

[4]  P. Saari Reexamination of group velocities of structured light pulses , 2018, Physical Review A.

[5]  J. Leach,et al.  How fast is a twisted photon , 2017, 1711.05582.

[6]  Guang-Can Guo,et al.  Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality , 2017 .

[7]  M. Fedorov,et al.  Diverging light pulses in vacuum: Lorentz-invariant mass and mean propagation speed , 2017 .

[8]  G. Plunien,et al.  Pulse shape effects on the electron-positron pair production in strong laser fields , 2017, 1701.01058.

[9]  R. Schutzhold,et al.  Prefactor in the dynamically assisted Sauter-Schwinger effect , 2016, 1603.00864.

[10]  Daniel A. Nolan,et al.  Slowing of Bessel light beam group velocity , 2016 .

[11]  D. Blaschke,et al.  Schwinger effect at modern laser facilities , 2016 .

[12]  H. Bauke,et al.  Multi-pair states in electron-positron pair creation , 2015, 1511.07709.

[13]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[14]  C. Keitel,et al.  Semiclassical picture for electron-positron photoproduction in strong laser fields , 2015, 1503.03271.

[15]  Annett Wechsler,et al.  Probing The Quantum Vacuum , 2016 .

[16]  R. Boyd,et al.  Observation of subluminal twisted light in vacuum , 2015, 1512.02597.

[17]  B. Kämpfer,et al.  Assisted dynamical Schwinger effect: pair production in a pulsed bifrequent field , 2015, 1509.02901.

[18]  I. Ojima,et al.  Photon Localization Revisited , 2015, 1507.06772.

[19]  L. Zawiejski,et al.  The Study of the Photon Structure Functions in the ILC Energy Range , 2015, 1503.07373.

[20]  S. Barnett,et al.  Spatially structured photons that travel in free space slower than the speed of light , 2014, Science.

[21]  D. Gauthier,et al.  High-dimensional quantum cryptography with twisted light , 2014, 1402.7113.

[22]  L Vaidman,et al.  Asking photons where they have been. , 2013, Physical review letters.

[23]  P. Schuster,et al.  Searching for light dark matter with the SLAC millicharge experiment. , 2013, Physical review letters.

[24]  J. Longworth,et al.  Reaching Vacuum Harmonic Generation and Approaching the Schwinger Limit with X‐Rays , 2013 .

[25]  Rupert Ursin,et al.  Quantum erasure with causally disconnected choice , 2012, Proceedings of the National Academy of Sciences.

[26]  Guang-Can Guo,et al.  Revisiting Bohr's principle of complementarity with a quantum device , 2012, 1204.5304.

[27]  Guang-Can Guo,et al.  Realization of quantum Wheeler's delayed-choice experiment , 2012, Nature Photonics.

[28]  R. Blatt,et al.  Tunable Ion-Photon Entanglement in an Optical Cavity , 2012, Nature.

[29]  Rupert Ursin,et al.  Experimental delayed-choice entanglement swapping , 2012 .

[30]  P. Saari Photon Localization Revisited , 2012 .

[31]  Radu Ionicioiu,et al.  Proposal for a quantum delayed-choice experiment. , 2011, Physical review letters.

[32]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[33]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[34]  M. Voloshin,et al.  Semiclassical calculation of photon-stimulated Schwinger pair creation , 2010, 1001.3354.

[35]  W. Wieczorek Multi-Photon Entanglement , 2009 .

[36]  G. Dunne,et al.  New strong-field QED effects at extreme light infrastructure , 2009 .

[37]  E. Bakhoum Proof of Thomson's theorem of electrostatics , 2008 .

[38]  P. Grangier,et al.  Delayed-choice test of quantum complementarity with interfering single photons. , 2008, Physical review letters.

[39]  S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas , 2008 .

[40]  A. Melchiorri,et al.  New bounds on millicharged particles from cosmology , 2007, hep-ph/0703144.

[41]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[42]  I. Istadi,et al.  QUANTUM THEORY & ATOMIC STRUCTURE , 2007 .

[43]  Polarized light propagating in a magnetic field as a probe for millicharged fermions. , 2006, Physical review letters.

[44]  J. H. Hubbell,et al.  Electron-positron pair production by photons : A historical overview , 2006 .

[45]  Yakir Aharonov,et al.  Time and the Quantum: Erasing the Past and Impacting the Future , 2005, Science.

[46]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[47]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[48]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[49]  Poland,et al.  Survey of present data on photon structure functions and resolved photon processes , 1998, hep-ph/9806291.

[50]  S. Hillert,et al.  Dijet photoproduction at HERA and the structure of the photon , 2001 .

[51]  Shih,et al.  Delayed "Choice" quantum eraser , 1999, Physical review letters.

[52]  R. Nisius The photon structure from deep inelastic electron–photon scattering , 1999, hep-ex/9912049.

[53]  Craig A. Grimes,et al.  Radiation Q of dipole‐generated fields , 1999 .

[54]  R. Nisius,et al.  QED structure functions of the photon , 1998, hep-ph/9812281.

[55]  H. Gies,et al.  Light propagation in nontrivial QED vacua , 1998, hep-ph/9804375.

[56]  J. Baudon,et al.  Delayed choices in atom Stern-Gerlach interferometry. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[57]  Vogt,et al.  Parton structure of the photon beyond the leading order. , 1992, Physical review. D, Particles and fields.

[58]  M. Berry Quantum chaology, not quantum chaos , 1989 .

[59]  J. Baldzuhn,et al.  A wave-particle delayed-choice experiment with a single-photon state , 1989 .

[60]  N. Balazs,et al.  Schr̈odinger: Life and Thought , 1989 .

[61]  Peter W. Milonni,et al.  Different Ways of Looking at the Electromagnetic Vacuum , 1988 .

[62]  M. Berry The Bakerian Lecture, 1987. Quantum chaology , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  W. Stirling,et al.  Longitudinal structure function of the photon in supersymmetric quantum chromodynamics , 1984 .

[64]  D. Duke,et al.  Photon structure function as calculated using perturbative quantum chromodynamics , 1980 .

[65]  Peter W. Milonni,et al.  Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory , 1976 .

[66]  E. S. Shire,et al.  Classical electricity and magnetism , 1960 .

[67]  D. R. Hartree,et al.  The calculation of atomic structures , 1959 .

[68]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[69]  E.H. Armstrong,et al.  Some Recent Developments of Regenerative Circuits , 1922, Proceedings of the Institute of Radio Engineers.