On the Number of Simplicial Complexes in D
暂无分享,去创建一个
[1] E. Szemerédi,et al. Crossing-Free Subgraphs , 1982 .
[2] D. Kleitman,et al. On Dedekind’s problem: The number of monotone Boolean functions , 1969 .
[3] R. Stanley. The Upper Bound Conjecture and Cohen‐Macaulay Rings , 1975 .
[4] Herbert Edelsbrunner,et al. Counting triangle crossings and halving planes , 1993, SCG '93.
[5] Jerome Dancis,et al. Triangulated n-manifolds are determined by their [n2] + 1-skeletons , 1984 .
[6] I. Bárány,et al. Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.
[7] Gil Kalai,et al. Many triangulated spheres , 1988, Discret. Comput. Geom..
[8] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[9] Richard Pollack,et al. Upper bounds for configurations and polytopes inRd , 1986, Discret. Comput. Geom..
[10] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[11] Tamal K. Dey. On Counting Triangulations in D Dimensions , 1993, Comput. Geom..