Effects of Reinforcing Elements on the Performance of Laser Transmission Welding Process in Polymer Composites: A Systematic Review

The laser transmission welding was initially introduced to join thermoplastic sheet film and moulded objects. However, presently this welding technique has been brought to the industrial applications to join polymer composites. Unlike polymer-polymer laser transmission welding, optical and thermal properties of reinforcing elements greatly influence the laser transmission welding process of polymer composites. It is dedicated for all reported works that glass fiber causes scattering in composites which reduces the laser intensity of transparent material and thus, glass fiber is not suitable for absorbing laser rather it needs additive such as carbon black to improve laser absorption. Moreover, it is demonstrated here based upon systematic reviewing of laser transmission welding that carbon fiber and carbon nanotubes have very good laser absorption capacities, but not suitable for transparent parts. Moreover, natural fibers are found to inherit some limitations for laser transmission welding including the low processing temperature, prone to chemical reaction due to organic material and laser interaction. Besides, various welding methods are categorized and discussed here.

[1]  Qinglin Wu,et al.  Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis , 2008 .

[2]  N. S. Saxena,et al.  Thermal properties of pineapple leaf fiber reinforced composites , 2003 .

[3]  S. M. Sapuan,et al.  Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam , 2010 .

[4]  G. Zak,et al.  Effect of carbon black on light transmission in laser welding of thermoplastics , 2011 .

[5]  Lorenzo Torrisi,et al.  Effect of carbon nanotube amount on polyethylene welding process induced by laser source , 2011 .

[6]  M. E. Hoque,et al.  Natural fiber reinforced conductive polymer composites as functional materials: A review , 2015 .

[7]  G. Labeas,et al.  Optimisation of laser welding process for thermoplastic composite materials with regard to component quality and cost , 2009 .

[8]  A. Durmuş,et al.  Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites , 2014 .

[9]  Rainer Zah,et al.  Curauá fibers in the automobile industry - a sustainability assessment , 2007 .

[10]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[11]  Y. Candau,et al.  Thermophysical properties of natural fibre reinforced polyester composites , 2006 .

[12]  Michael Schmidt,et al.  Optical properties of plastics and their role for the modelling of the laser transmission welding process , 2009, Prod. Eng..

[13]  M. Salit,et al.  A Novel Evaluation Tool for Enhancing the Selection of Natural Fibers for Polymeric Composites Based on Fiber Moisture Content Criterion , 2014 .

[14]  Christoph Herrmann,et al.  Glocalized Solutions for Sustainability in Manufacturing , 2011 .

[15]  M. T. Paridah,et al.  Physical, mechanical, and biodegradable properties of meranti wood polymer composites , 2014 .

[16]  Michael Schmidt,et al.  Experimental and Simulative Investigation of Laser Transmission Welding under Consideration of Scattering , 2012 .

[17]  Alan H. Windle,et al.  Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites , 2006 .

[18]  S. Sapuan,et al.  Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites. , 2009 .

[19]  Faris M. AL-Oqla,et al.  Selecting Natural Fibers for Bio-Based Materials with Conflicting Criteria , 2015 .

[20]  F. Al-Oqla,et al.  Polymer Selection Approach for Commonly and Uncommonly Used Natural Fibers Under Uncertainty Environments , 2015 .

[21]  M. Arakawa,et al.  Alkali-metal-graphite intercalation compounds prepared from flexible graphite sheets exhibiting high air stability and electrical conductivity , 2012 .

[22]  T. Chuah,et al.  Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber , 2006 .

[23]  J. Jog,et al.  Natural fiber polymer composites: A review , 1999 .

[24]  Reinhart Poprawe,et al.  Tailored light 2 : laser application technology , 2011 .

[25]  D. Ahmad,et al.  Concept selection of car bumper beam with developed hybrid bio-composite material , 2011 .

[26]  Ali Durmus,et al.  Quantifying microstructure, electrical and mechanical properties of carbon fiber and expanded graphite filled cyclic olefin copolymer composites , 2014 .

[27]  Jim Holbery,et al.  Natural-fiber-reinforced polymer composites in automotive applications , 2006 .

[28]  Yusoff Nukman,et al.  Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2 laser joining of dissimilar materials , 2014 .

[29]  R. Poprawe,et al.  Laser transmission joining in microtechnology , 2006 .

[30]  J. P. Donohoe,et al.  Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites , 2004 .

[31]  S. Katayama,et al.  Laser Direct Joining of Glassy Metal Zr55Al10Ni5Cu30 to Engineering Plastic Polyethylene Terephthalate , 2010 .

[32]  Sotiris Makris,et al.  Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach , 2010 .

[33]  R. Poprawe,et al.  Applications of laser transmission processes for the joining of plastics, silicon and glass micro parts , 2008 .

[34]  V. Kagan,et al.  Laser Transmission Welding of Semi-Crystalline Thermoplastics—Part I: Optical Characterization of Nylon Based Plastics , 2002 .

[35]  Mingwei Li,et al.  Transmission welding of carbon nanocomposites with direct-diode and Nd:YAG solid state lasers , 2004, SPIE LASE.

[36]  A. Erdman,et al.  Laser transmission welding of thermoplastics-Part I Temperature and pressure modeling , 2007 .

[37]  V. Calado,et al.  Thermogravimetric Stability Behavior of Less Common Lignocellulosic Fibers - a Review , 2012 .

[38]  J. Kolar,et al.  Near-UV, visible and IR pulsed laser light interaction with cellulose , 2000 .

[39]  F. Kačík,et al.  Chemical changes of beech wood due to CO2 laser irradiation , 2011 .

[40]  A. Boglea,et al.  Fibre laser welding for packaging of disposable polymeric microfluidic-biochips , 2007 .

[41]  Dan Watt,et al.  Welding thermoplastic elastomers to polypropylene with a diode laser , 2002 .

[42]  K. Guo A review of micro/nano welding and its future developments. , 2009, Recent patents on nanotechnology.

[43]  N. Ismail,et al.  Material selection of polymeric composite automotive bumper beam using analytical hierarchy process , 2010 .

[44]  V. Kagan,et al.  Laser Transmission Welding of Semicrystalline Thermoplastics - Part II: Analysis of Mechanical Performance of Welded Nylon , 2004 .

[45]  L. Tabil,et al.  Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–HDPE biocomposites at processing temperatures , 2008 .

[46]  S. Sapuan,et al.  Decision making model for optimal reinforcement condition of natural fiber composites , 2015, Fibers and Polymers.

[47]  S. M. Sapuan,et al.  Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model , 2015, Comput. Electron. Agric..

[48]  S. Sapuan,et al.  Tensile Properties of Arenga pinnata Fiber-Reinforced Epoxy Composites , 2006 .

[49]  Martin C. Hawley,et al.  Thermal, morphological, and electrical characterization of microwave processed natural fiber composites , 2007 .

[50]  Friedrich G. Bachmann,et al.  Laser welding of polymers using high-power diode lasers , 2002, SPIE LASE.

[51]  Faris M. AL-Oqla,et al.  A decision-making model for selecting the most appropriate natural fiber – Polypropylene-based composites for automotive applications , 2016 .

[52]  B. Simard,et al.  Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I – Structure, thermal stability and crystallization behaviour , 2012 .

[53]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[54]  Faris M. AL-Oqla,et al.  Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry , 2014 .

[55]  J. C. Miller,et al.  History, Scope, and the Future of Laser Ablation , 1994 .

[56]  Philip J. Bates,et al.  Laser Light Transmission Through Thermoplastics as a Function of Thickness and Laser Incidence Angle: Experimental and Modeling , 2012 .

[57]  W. Knapp,et al.  Laser-bonding of long fiber thermoplastic composites for structural assemblies , 2010 .

[58]  S. Katayama,et al.  Laser direct joining of metal and plastic , 2008 .

[59]  L. Torrisi,et al.  Polyethylene welding by pulsed visible laser irradiation , 2011 .

[60]  Michael Panzner,et al.  Experimental investigation of the laser ablation process on wood surfaces , 1998 .

[61]  I. Quintana,et al.  Laser transmission welding of ABS: Effect of CNTs concentration and process parameters on material integrity and weld formation , 2014 .

[62]  G. Tibbetts,et al.  Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .

[63]  Marianna Kontopoulou,et al.  Contour Laser – Laser-Transmission Welding of Glass Reinforced Nylon 6 , 2006 .

[64]  S. Mitra,et al.  Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study , 2012 .

[65]  A two-dimensional thermal finite element model of laser transmission welding for T joint , 2006 .

[66]  K. F. Tamrin,et al.  Laser Lap Joining of Dissimilar Materials: A Review of Factors Affecting Joint Strength , 2013 .

[67]  Faris M. AL-Oqla,et al.  Processing and Properties of Date Palm Fibers and Its Composites , 2014 .

[68]  Xiao Wang,et al.  Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polypropylene , 2014 .

[69]  S. Nagai,et al.  Thermal conductivity of a polyethylene filled with disoriented short‐cut carbon fibers , 1991 .

[70]  M. Wahba,et al.  Laser direct joining of AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate , 2011 .

[71]  Helmut Potente,et al.  A step towards understanding the heating phase of laser transmission welding in polymers , 2002 .

[72]  Robert J. Donovan,et al.  Laser Chemistry: Spectroscopy, Dynamics and Applications , 2007 .

[73]  Tianxi Liu,et al.  Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites , 2004 .

[74]  Seiji Katayama,et al.  Mechanical property and joining characteristics of laser direct joining of CFRP to polyethylene terephthalate , 2014 .

[75]  Jin Huang,et al.  Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites , 2013 .

[76]  M. Aden,et al.  Laser Transmission Welding of White Thermoplastics with Adapted Wavelengths , 2013 .

[77]  F. Yusof,et al.  Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052) , 2012 .

[78]  Mohd Sapuan Salit,et al.  Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. , 2014 .

[79]  M. E. Hoque,et al.  Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties , 2015 .

[80]  S. Barcikowski,et al.  Characterisation and modification of the heat affected zone during laser material processing of wood and wood composites , 2006, Holz als Roh- und Werkstoff.

[81]  Sabu Thomas,et al.  Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres , 2000 .