Moduli Set Selection and Cost Estimation for RNS-Based FIR Filter and Filter Bank Design
暂无分享,去创建一个
[1] Stanislaw J. Piestrak. Design of Residue Generators and Multioperand Modular Adders Using Carry-Save Adders , 1994, IEEE Trans. Computers.
[2] A. B. Premkumar,et al. An RNS to binary converter in 2n+1, 2n, 2n-1 moduli set , 1992 .
[3] W. Kenneth Jenkins,et al. The use of residue number systems in the design of finite impulse response digital filters , 1977 .
[4] A. Hiasat,et al. Residue-to-binary arithmetic converter for the moduli set (2/sup k/, 2/sup k/-1, 2/sup k-1/-1) , 1998 .
[5] M. A. Soderstrand,et al. Comparison of RNS and optimized FIR digital filters in Xilinx FPGA's , 2001, Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257).
[6] Michael A. Soderstrand,et al. Residue number system arithmetic: modern applications in digital signal processing , 1986 .
[7] F. Pourbigharaz,et al. Simple binary to residue transformation with respect to 2/sup m/+1 moduli , 1994 .
[8] Chiew Tong Lau,et al. A reconfigurable multi-standard channelizer using QMF trees for software radio receivers , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..
[9] Graham A. Jullien,et al. Residue Number Scaling and Other Operations Using ROM Arrays , 1978, IEEE Transactions on Computers.
[10] M. Omair Ahmad,et al. Moduli selection in RNS for efficient VLSI implementation , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..
[11] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[12] A. Benjamin Premkumar,et al. A Memoryless Reverse Converter for the 4-Moduli Superset {2n-1, 2n, 2n+1, 2n+1-1} , 2000, J. Circuits Syst. Comput..
[13] Ahmad A. Hiasat,et al. High-Speed and Reduced-Area Modular Adder Structures for RNS , 2002, IEEE Trans. Computers.
[14] A. P. Vinod. A MEMORYLESS REVERSE CONVERTER FOR THE 4-MODULI SUPERSET {2n - 1, 2n, 2n + 1, 2n + 1 - 1} , 2000 .
[15] Dimitrios Soudris,et al. A methodology for implementing FIR filters and CAD tool development for designing RNS-based systems , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..
[16] Hong Shen,et al. Adder based residue to binary number converters for (2n-1, 2n, 2n+1) , 2002, IEEE Trans. Signal Process..
[17] Jimson Mathew,et al. Residue-to-Binary Arithmetic Converter for the Moduli Set { 2 n-1 , 2 n , 2 n + 1 , 2 n + 1 + 1 , 2 n + 2-1 } , 1999 .