A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem

We examine bilevel mixed-integer programs whose constraints and objective functions depend on both upper- and lower-level variables. The class of problems we consider allows for nonlinear terms to appear in both the constraints and the objective functions, requires all upper-level variables to be integer, and allows a subset of the lower-level variables to be integer. This class of bilevel problems is difficult to solve because the upper-level feasible region is defined in part by optimality conditions governing the lower-level variables, which are difficult to characterize because of the nonconvexity of the follower problem. We propose an exact finite algorithm for these problems based on an optimal-value-function reformulation. We demonstrate how this algorithm can be tailored to accommodate either optimistic or pessimistic assumptions on the follower behavior. Computational experiments demonstrate that our approach outperforms a state-of-the-art algorithm for solving bilevel mixed-integer linear programs.

[1]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[2]  S. Dempe,et al.  Bilevel programming with discrete lower level problems , 2009 .

[3]  Stephan Dempe,et al.  KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization , 2014, SIAM J. Optim..

[4]  Andrew J. Schaefer,et al.  Totally unimodular stochastic programs , 2012, Mathematical Programming.

[5]  Berç Rustem,et al.  Parametric global optimisation for bilevel programming , 2007, J. Glob. Optim..

[6]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[7]  Stephan Dempe,et al.  Bilevel road pricing: theoretical analysis and optimality conditions , 2012, Ann. Oper. Res..

[8]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[9]  Berç Rustem,et al.  A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems , 2009, J. Glob. Optim..

[10]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[11]  E. Balas,et al.  Canonical Cuts on the Unit Hypercube , 1972 .

[12]  M. Queyranne,et al.  Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs , 2009, 0907.1298.

[13]  Alexander Mitsos,et al.  Global solution of nonlinear mixed-integer bilevel programs , 2010, J. Glob. Optim..

[14]  Martine Labbé,et al.  A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network , 2000, Transp. Sci..

[15]  Nataliya I. Kalashnykova,et al.  Bilevel Programming Problems , 2015 .

[16]  P. Marcotte,et al.  A bilevel model of taxation and its application to optimal highway pricing , 1996 .

[17]  Marianthi G. Ierapetritou,et al.  Resolution method for mixed integer bi-level linear problems based on decomposition technique , 2009, J. Glob. Optim..

[18]  P. I. Barton,et al.  Bilevel optimization formulation for parameter estimation in vapor–liquid(–liquid) phase equilibrium problems , 2009 .

[19]  Jane J. Ye Constraint Qualifications and KKT Conditions for Bilevel Programming Problems , 2006, Math. Oper. Res..

[20]  Stephan Dempe,et al.  Necessary optimality conditions for optimistic bilevel programming problems using set-valued programming , 2015, J. Glob. Optim..

[21]  S. Dempe,et al.  On the solution of convex bilevel optimization problems , 2015, Computational Optimization and Applications.

[22]  Erick Delage,et al.  Robust Multistage Decision Making , 2015 .

[23]  Alain B. Zemkoho,et al.  Necessary optimality conditions in pessimistic bilevel programming , 2014 .

[24]  Hong Zhou,et al.  An extended branch and bound algorithm for linear bilevel programming , 2006, Appl. Math. Comput..

[25]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[26]  Stephan Dempe,et al.  Natural gas bilevel cash-out problem: Convergence of a penalty function method , 2011, European Journal of Operational Research.

[27]  Jie Lu,et al.  An extended Kuhn-Tucker approach for linear bilevel programming , 2005, Appl. Math. Comput..

[28]  P. I. Barton,et al.  Model and Parameter Identification in Phase Equilibria , 2009 .

[29]  J. C. Smith,et al.  Procurement allocation planning with multiple suppliers under competition , 2013 .

[30]  Jonathan Cole Smith,et al.  A mixed-integer bilevel programming approach for a competitive prioritized set covering problem , 2016, Discret. Optim..

[31]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[32]  Pan Xu,et al.  An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions , 2014, Comput. Oper. Res..

[33]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[34]  J. Bard,et al.  An algorithm for the discrete bilevel programming problem , 1992 .

[35]  Jiuping Xu,et al.  Bilevel Optimization of Regional Water Resources Allocation Problem under Fuzzy Random Environment , 2013 .

[36]  Gerardo A. Pérez-Valdés,et al.  A linearization approach to solve the natural gas cash-out bilevel problem , 2010, Ann. Oper. Res..

[37]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[38]  Stephan Dempe,et al.  Discrete bilevel programming: Application to a natural gas cash-out problem , 2005, Eur. J. Oper. Res..

[39]  Peter Värbrand,et al.  A global optimization approach for the linear two-level program , 1993, J. Glob. Optim..

[40]  J. M. Moore An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs , 1968 .

[41]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[42]  J. Cole Smith,et al.  A Backward Sampling Framework for Interdiction Problems with Fortification , 2017, INFORMS J. Comput..

[43]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[44]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[45]  Efstratios N. Pistikopoulos,et al.  Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems , 2010, Comput. Chem. Eng..

[46]  Jonathan F. Bard,et al.  An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem , 1983, Oper. Res..

[47]  Paul I. Barton,et al.  Global solution of bilevel programs with a nonconvex inner program , 2008, J. Glob. Optim..