TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY

This paper obtains the exact 1-soliton solution of the complex Ginzburg- Landau equation with power law nonlinearity that governs the propagation of solitons through nonlinear optical flbers. The technique that is used to carry out the integration of this equation is He's semi-inverse variational principle.

[1]  S. Srivastava,et al.  Coupled Bright-Dark Soliton Pairs in Polymeric Photorefractive Materials , 2008 .

[2]  Abdul-Majid Wazwaz,et al.  Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities , 2006, Math. Comput. Model..

[3]  Dawn A. Lott,et al.  Dynamics of topological optical solitons with time-dependent dispersion, nonlinearity and attenuation , 2009 .

[4]  Anjan Biswas,et al.  Adiabatic Dynamics of Gaussian and Super-Gaussian Solitons in Dispersion-Managed Optical Fibers , 2008 .

[5]  Sahay Shwetanshumala,et al.  Temporal Solitons of Modified Complex Ginzberg Landau Equation , 2008 .

[6]  A. Biswas,et al.  Optical Soliton Cooling in a Saturable Law Media , 2008 .

[7]  C. M. Khalique,et al.  Optical Solitons with Parabolic and Dual-Power Law Nonlinearity via Lie Symmetry Analysis , 2009 .

[8]  A. Biswas Stochastic Perturbation of Parabolic Law Optical Solutions , 2007 .

[9]  A. Biswas,et al.  Femtosecond Pulse Propagation in Optical Fibers Under Higher Order Effects: A Collective Variable Approach , 2008 .

[10]  A. Wazwaz A study on linear and nonlinear Schrodinger equations by the variational iteration method , 2008 .

[11]  Manoj Mishra,et al.  Interaction of Solitons in a Dispersion Managed Optical Communication System with Asymmetric Dispersion Map , 2007 .

[12]  A. Biswas Stochastic Perturbation of Parabolic Law Optical Solitons , 2006 .

[13]  Abdul-Majid Wazwaz,et al.  Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and a power law nonlinearity , 2006, Math. Comput. Model..

[14]  Anjan Biswas,et al.  TIMING SHIFT OF OPTICAL PULSES DUE TO INTER-CHANNEL CROSS-TALK , 2008 .

[15]  A. Biswas,et al.  SOLITON PARAMETER DYNAMICS IN A NON-KERR LAW MEDIA , 2008 .

[16]  Anjan Biswas,et al.  Influence of Even Order Dispersion on Soliton Transmission Quality with Coherent Intereference , 2008 .

[17]  Manoj Mishra,et al.  HIGH BIT RATE DENSE DISPERSION MANAGED OPTICAL COMMUNICATION SYSTEMS WITH DISTRIBUTED AMPLIFICATION , 2008 .

[18]  Anjan Biswas,et al.  Optical Solitons by He’s Variational Principle in a Non-Kerr Law Media , 2009 .

[19]  Soumendu Jana,et al.  Propagation of a Mixture of Modes of a Laser Beam in a Medium with Saturable Nonlinearity , 2006 .

[20]  Anjan Biswas,et al.  Introduction to non-Kerr Law Optical Solitons , 2006 .

[21]  A. Biswas DYNAMICS OF GAUSSIAN AND SUPER-GAUSSIAN SOLITONS IN BIREFRINGENT OPTICAL FIBERS , 2001 .

[22]  Dawn A. Lott,et al.  Topological 1-SOLITON Solution of the Generalized Radhakrishnan, Kundu, Lakshmanan Equation with Nonlinear Dispersion , 2010 .

[23]  Anjan Biswas,et al.  A numerical study of optical soliton-like structures resulting from the nonlinear Schrödinger's equation with square-root law nonlinearity , 2009, Appl. Math. Comput..

[24]  A. Biswas,et al.  Theory of Dispersion-Managed Optical Solitons , 2005 .

[25]  A. Biswas,et al.  SOLITON PERTURBATION THEORY FOR DISPERSION-MANAGED OPTICAL FIBERS , 2009 .

[26]  Dawn A. Lott,et al.  Topological Solitons in 1+2 Dimensions with Time-Dependent Coefficients , 2009 .