Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.

Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage.

[1]  Steven G. Louie,et al.  Graphene at the Edge: Stability and Dynamics , 2009, Science.

[2]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[3]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[4]  S. Okada Energetics of nanoscale graphene ribbons : Edge geometries and electronic structures , 2008 .

[5]  A. Kirkland,et al.  Controlled radiation damage and edge structures in boron nitride membranes. , 2011, ACS nano.

[6]  M F Crommie,et al.  Direct imaging of lattice atoms and topological defects in graphene membranes. , 2008, Nano letters.

[7]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[8]  A. Krasheninnikov,et al.  Electron knock-on damage in hexagonal boron nitride monolayers , 2010 .

[9]  H. Dai,et al.  Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties. , 2011, Journal of the American Chemical Society.

[10]  X. Jia,et al.  Controlling edge morphology in graphene layers using electron irradiation: from sharp atomic edges to coalesced layers forming loops. , 2010, Physical review letters.

[11]  P. Koskinen,et al.  Evidence for graphene edges beyond zigzag and armchair , 2009, 0906.0688.

[12]  Grégory Pandraud,et al.  Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. , 2011, Nano letters.

[13]  J. Warner,et al.  Structural transformations in graphene studied with high spatial and temporal resolution. , 2009, Nature nanotechnology.

[14]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[15]  H. Santos,et al.  Carbon nanoelectronics: unzipping tubes into graphene ribbons. , 2009, Physical review letters.

[16]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[17]  C. Jin,et al.  Deriving carbon atomic chains from graphene. , 2009, Physical review letters.

[18]  W. J. Weber,et al.  Controlling electronic structures by irradiation in single-walled SiC nanotubes: a first-principles molecular dynamics study , 2009, Nanotechnology.

[19]  J. Meyer,et al.  From graphene constrictions to single carbon chains , 2009, 0905.3090.

[20]  F. Banhart,et al.  Irradiation effects in carbon nanostructures , 1999 .

[21]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[22]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[23]  Graphene edge from armchair to zigzag: the origins of nanotube chirality? , 2010, Physical review letters.

[24]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[25]  Jian Yu Huang,et al.  In situ imaging of layer-by-layer sublimation of suspended graphene , 2010 .

[26]  A. Krasheninnikov,et al.  Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality , 2005 .

[27]  Arkady V. Krasheninnikov,et al.  Carbon nanotubes under electron irradiation : Stability of the tubes and their action as pipes for atom transport , 2005 .

[28]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[29]  A. Krasheninnikov,et al.  Ion and electron irradiation-induced effects in nanostructured materials , 2010 .

[30]  A. Krasheninnikov,et al.  Role of electronic excitations in ion collisions with carbon nanostructures. , 2006, Physical review letters.

[31]  G. Seifert,et al.  Electron knock-on cross section of carbon and boron nitride nanotubes , 2007 .

[32]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical Review Letters.

[33]  Lee R. White,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009 .

[34]  A. Krasheninnikov Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies , 2001 .

[35]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[36]  H. Dai,et al.  Narrow graphene nanoribbons from carbon nanotubes , 2009, Nature.

[37]  N. Besley,et al.  Direct transformation of graphene to fullerene. , 2010, Nature chemistry.

[38]  Herman Feshbach,et al.  The Coulomb Scattering of Relativistic Electrons by Nuclei , 1948 .

[39]  A. Krasheninnikov,et al.  Adsorption and migration of carbon adatoms on zigzag carbon nanotubes , 2004 .

[40]  J. Tour,et al.  Layer-by-Layer Removal of Graphene for Device Patterning , 2011, Science.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  A. Krasheninnikov,et al.  Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation , 2011, 1105.1617.

[43]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[44]  Jannik C. Meyer,et al.  From point defects in graphene to two-dimensional amorphous carbon. , 2011, Physical review letters.

[45]  A. Bleloch,et al.  Free-standing graphene at atomic resolution. , 2008, Nature nanotechnology.

[46]  A. Krasheninnikov,et al.  Response of mechanically strained nanomaterials to irradiation: Insight from atomistic simulations , 2010 .

[47]  Thomas Frauenheim,et al.  Atomistic simulations of complex materials: ground-state and excited-state properties , 2002 .

[48]  Pekka Koskinen,et al.  Self-passivating edge reconstructions of graphene. , 2008, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.