Structural features and thermodynamics of the J4/5 loop from the Candida albicans and Candida dubliniensis group I introns.

The J4/5 loop of group I introns has tertiary interactions with the P1 helix that position the P1 substrate for the self-splicing reaction. The J4/5 loop of Candida albicans and Candida dubliniensis, 5'GAAGG3'/3'UAAUU5', potentially contains two A.A pairs flanked by one G.U pair on one side and two G.U pairs on the other side. Results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments with a mimic of the C. albicans and C. dubliniensis J4/5 loop are consistent with the adenosines forming tandem sheared A.A pairs with a cross-strand stack and only the G.U pair not adjacent to an A.A pair forming a static wobble G.U pair. The two G.U pairs adjacent to the tandem A.A pairs are likely in a dynamic equilibrium between multiple conformations. Although Co(NH(3))(6)(3+) stabilizes the loop by several kilocalories per mole at 37 degrees C, addition of Mg(2+) or Co(NH(3))(6)(3+) has no effect on the structure of the loop. The tandem G.U pairs provide a pocket of negative charge for Co(NH(3))(6)(3+) to bind. The results contribute to understanding the structure and dynamics of purine-rich internal loops and potential G.U pairs adjacent to internal loops.

[1]  J. Davies,et al.  Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. , 1968, The Journal of biological chemistry.

[2]  I. Tinoco,et al.  Stability of ribonucleic acid double-stranded helices. , 1974, Journal of molecular biology.

[3]  P. D. Johnston,et al.  Pulsed FT-NMR double resonance studies of yeast tRNAPhe: specific nuclear Overhauser effects and reinterpretation of low temperature relaxation data. , 1978, Nucleic acids research.

[4]  D. Turner,et al.  Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. , 1983, Biochemistry.

[5]  M. Zuker,et al.  Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[6]  David G. Gorenstein,et al.  Phosphorus-31 NMR : principles and applications , 1984 .

[7]  R. Cedergren,et al.  The automated chemical synthesis of long oligoribuncleotides using 2'-O-silylated ribonucleoside 3'-O-phosphoramidites on a controlled-pore glass support: synthesis of a 43-nucleotide sequence similar to the 3'-half molecule of an Escherichia coli formylmethionine tRNA , 1987 .

[8]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[9]  J. Stawinski,et al.  Evaluation of the Use of the t-Butyldimethylsilyl Group for 2′-Protection in RNA-Synthesis Via the H-Phosphonate Approach , 1988 .

[10]  T. Cech,et al.  Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. , 1988, Gene.

[11]  S. Chou,et al.  Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUCGCG) and r(CGCGUAUACGCG). , 1989, Biochemistry.

[12]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[13]  R. Gaynes,et al.  Major trends in the microbial etiology of nosocomial infection. , 1991, The American journal of medicine.

[14]  G. Varani,et al.  RNA structure and NMR spectroscopy , 1991, Quarterly Reviews of Biophysics.

[15]  P. Sigler,et al.  The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. , 1991, The EMBO journal.

[16]  G. Varani,et al.  Structure of an unusually stable RNA hairpin. , 1991, Biochemistry.

[17]  H. Noller,et al.  Interaction of antibiotics with A‐ and P‐site‐specific bases in 16S ribosomal RNA. , 1991, The EMBO journal.

[18]  M. Belfort,et al.  Introns as mobile genetic elements. , 1993, Annual review of biochemistry.

[19]  J. Cowan,et al.  Metallobiochemistry of RNA. Co(NH3)6(3+) as a probe for Mg2+(aq) binding sites. , 1993, Journal of inorganic biochemistry.

[20]  G. Lemay,et al.  Correlation between the presence of a self-splicing intron in the 25S rDNA of C.albicans and strains susceptibility to 5-fluorocytosine. , 1993, Nucleic acids research.

[21]  G. Roberts,et al.  NMR of macromolecules : a practical approach , 1993 .

[22]  S. Smallcombe Solvent suppression with symmetrically-shifted pulses , 1993 .

[23]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[24]  R. Gutell,et al.  A comparative database of group I intron structures. , 1994, Nucleic acids research.

[25]  G. Varani,et al.  Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. , 1995, Nucleic acids research.

[26]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[27]  D. Turner,et al.  A periodic table of symmetric tandem mismatches in RNA. , 1995, Biochemistry.

[28]  S. Scaringe,et al.  Synthesis, deprotection, analysis and purification of RNA and ribozymes. , 1995, Nucleic acids research.

[29]  I. Tinoco,et al.  Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. , 1995, Nucleic acids research.

[30]  D. Turner,et al.  Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. , 1996, Biochemistry.

[31]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[32]  Gabriele Varani,et al.  NMR investigation of RNA structure , 1996 .

[33]  E Westhof,et al.  New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. , 1996, Chemistry & biology.

[34]  J. Doudna,et al.  Metal-binding sites in the major groove of a large ribozyme domain. , 1996, Structure.

[35]  Association of a group I intron with its splice junction in 50S ribosomes: implications for intron toxicity. , 1997, RNA.

[36]  C. Prescott,et al.  RNA as a drug target. , 1997, Chemistry & biology.

[37]  I. Tinoco,et al.  Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine. , 1997, Structure.

[38]  G. Moran,et al.  Candidiasis: the emergence of a novel species, Candida dubliniensis , 1997, AIDS.

[39]  T. Steitz,et al.  How glutaminyl-tRNA synthetase selects glutamine. , 1998, Structure.

[40]  S. Gellman,et al.  Energetic Superiority of Two-Center Hydrogen Bonding Relative To Three-Center Hydrogen Bonding in a Model System , 1998 .

[41]  R. Gutell,et al.  The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. , 1998, RNA.

[42]  J. Puglisi,et al.  Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[43]  J. Puglisi,et al.  Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[44]  E Westhof,et al.  RNA as a drug target: chemical, modelling, and evolutionary tools. , 1998, Current opinion in biotechnology.

[45]  Dinshaw J. Patel,et al.  Solution structure of the tobramycin–RNA aptamer complex , 1998, Nature Structural Biology.

[46]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[47]  S. Strobel,et al.  Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site , 1998, Nature Structural Biology.

[48]  S. Strobel,et al.  A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. , 1999, Chemistry & biology.

[49]  D. Turner,et al.  Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. , 1999, Biochemistry.

[50]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[51]  I. Tinoco,et al.  Solution Structure and Thermodynamics of a Divalent Metal Ion Binding Site in an RNA Pseudoknot , 1999 .

[52]  I. Tinoco,et al.  Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme. , 1999, Journal of molecular biology.

[53]  T. Steitz,et al.  Crystal structures of two plasmid copy control related RNA duplexes: An 18 base pair duplex at 1.20 A resolution and a 19 base pair duplex at 1.55 A resolution. , 1999, Biochemistry.

[54]  D. Turner,et al.  The energetics of small internal loops in RNA , 1999, Biopolymers.

[55]  P. Bevilacqua,et al.  Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library. , 1999, Biochemistry.

[56]  George E. Fox,et al.  Database of non-canonical base pairs found in known RNA structures , 2000, Nucleic Acids Res..

[57]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[58]  I. Tinoco,et al.  Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. , 2000, RNA.

[59]  Targeting a Pneumocystis carinii group I intron with methylphosphonate oligonucleotides: backbone charge is not required for binding or reactivity. , 2000, Biochemistry.

[60]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[61]  G. Otto,et al.  Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function , 2000, Nature Structural Biology.

[62]  John J. Perona,et al.  Tertiary core rearrangements in a tight binding transfer RNA aptamer , 2000, Nature Structural Biology.

[63]  W. Olson,et al.  A-form conformational motifs in ligand-bound DNA structures. , 2000, Journal of molecular biology.

[64]  S. Strobel,et al.  A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. , 2000, Journal of molecular biology.

[65]  Philippe Dumas,et al.  Crystal structure of the S15–rRNA complex , 2000, Nature Structural Biology.

[66]  D. Turner,et al.  NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs. , 2000, Biochemistry.

[67]  G. Varani,et al.  The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. , 2000, EMBO reports.

[68]  Shigeyuki Yokoyama,et al.  Structural Basis for Double-Sieve Discrimination of L-Valine from L-Isoleucine and L-Threonine by the Complex of tRNAVal and Valyl-tRNA Synthetase , 2000, Cell.

[69]  Crystal structure of the S15-rRNA complex at 2.8 Å resolution , 2000 .

[70]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[71]  G. Varani,et al.  Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. , 2001, Accounts of chemical research.

[72]  The energetic contribution of a bifurcated hydrogen bond to the binding of DAPI to dA-dT rich sequences of DNA. , 2001, Journal of the American Chemical Society.

[73]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[74]  D H Turner,et al.  Thermodynamic stabilities of internal loops with GU closing pairs in RNA. , 2001, Biochemistry.

[75]  T. Cech,et al.  Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA--solvent interactions. , 2001, Structure.

[76]  Gabriele Varani,et al.  A conserved RNA structure within the HCV IRES eIF3-binding site , 2002, Nature Structural Biology.

[77]  Philip C Bevilacqua,et al.  Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. , 2002, Biochemistry.

[78]  Gota Kawai,et al.  Solution structure of an RNA fragment with the P7/P9.0 region and the 3'-terminal guanosine of the tetrahymena group I intron. , 2002, RNA.

[79]  Molecular recognition in purine-rich internal loops: thermodynamic, structural, and dynamic consequences of purine for adenine substitutions in 5'(rGGCAAGCCU)2. , 2002, Biochemistry.

[80]  Sheared Aanti.Aanti base pairs in a destabilizing 2 x 2 internal loop: the NMR structure of 5'(rGGCAAGCCU)2. , 2002, Biochemistry.

[81]  Eric Westhof,et al.  Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. , 2002, RNA.

[82]  Qin Zhao,et al.  NCIR: a database of non-canonical interactions in known RNA structures , 2002, Nucleic Acids Res..

[83]  Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron. , 2003, Biochemistry.

[84]  Yang Yang,et al.  An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems , 2003, J. Comput. Chem..

[85]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.