A polymacrocyclic oligoarylamine with a pseudobeltane motif: towards a cylindrical multispin system.

Although several types of belt-shaped compounds with novel structures have been reported over the past 30 years, they are currently receiving increasing attention in conjunction with the synthesis of the shortest possible segments of singlewalled carbon nanotubes. Nanoscaled beltlike molecules are considered to be “cycles of cycles”, and thus they have welldefined shapes with rigid cavities and can conceivably be used to construct solid-state materials with nanoporous networks. In addition, polymacrocycles with electron(or hole-) delocalized (or localized) scaffolds are fascinating for potential applications towards electron (or hole) transport and/or as magnetic materials. In this context, oligoarylamine-based macrocyclic spin systems are being pursued to take advantage of the multi-electron redox properties of oligoarylamines and the relative stability of their poly(radical cation)s. It is well known that strong Coulombic interactions between charged centers in oligoarylamine-based macrocycles hinder the generation of higher oxidation states with maximum spin multiplicity (Coulombic penalty). As we have shown recently, however, the insertion of para-phenylenediamine (PD) units into the molecular backbone can alleviate the Coulombic penalty between charged triarylaminium radical centers in oligoarylamines and lower their oxidation potentials. Tetraaza[14]m,p,m,p-cyclophane, the smallest macrocyclic oligoarylamine bearing the alternating meta–para linkage, is transformed into an almost pure spin-triplet diradical dication upon two-electron oxidation. Moreover, it has been demonstrated that the introduction of this macrocycle into a oligoarylamine backbone with one-dimensional connectivity can can convert the one-dimensional multispin system with a fragile spin-coupling pathway into a robust, aligned highspin system. Thus the polymacrocycles provided by the tetraazacyclophanes may be an indication for the further development of cylindrical multispin systems, which could culminate in nanotube-like surfaces with multi-electron redox activity. These findings led to the idea of utilizing the tetraazacyclophane unit as a component for a belt-shaped polymacrocyclic oligoarylamine. Polymacrocycle 1 (Scheme 1), which is classified as a pseudobeltane according to Vçgtle s nomenclature, 9] can be viewed as a kind of molecular belt containing six PD units connected by four 1,3,5-benzenetriyl ferromagnetic couplers, and thereby the higher oxidation states of 1 can lead to multispin systems.

[1]  U. Bunz,et al.  para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? , 2012, Angewandte Chemie.

[2]  Uwe H. F. Bunz,et al.  para‐Verknüpfte Cyclophenylene und halbkugelförmige Polyarene: Bausteine für einwandige Kohlenstoffnanoröhren? , 2012 .

[3]  H. Frauenrath,et al.  Elements for a rational polymer approach towards carbon nanostructures. , 2012, Angewandte Chemie.

[4]  H. Frauenrath,et al.  Elemente für ein rationales Polymerverfahren zur Synthese von Kohlenstoffnanostrukturen , 2012 .

[5]  K. Itami,et al.  Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. , 2012, Accounts of chemical research.

[6]  S. Eaton,et al.  Calix[4]arene nitroxide tetraradical and octaradical. , 2011, Chemical communications.

[7]  Toshiyasu Suzuki,et al.  Selective and random syntheses of [n]cycloparaphenylenes (n=8-13) and size dependence of their electronic properties. , 2011, Journal of the American Chemical Society.

[8]  Y. Ichikawa,et al.  Spin-Delocalization in Charged States of para-Phenylene-Linked Dendritic Oligoarylamines† , 2011 .

[9]  C. Bertozzi,et al.  Progress and Challenges for the Bottom-Up Synthesis of Carbon Nanotubes with Discrete Chirality. , 2010, Chemical physics letters.

[10]  K. Furukawa,et al.  High-spin polycationic states of an alternate meta-para-linked oligoarylamine incorporating two macrocycles. , 2009, Chemical communications.

[11]  L. T. Scott,et al.  New strategies for synthesizing short sections of carbon nanotubes. , 2009, Angewandte Chemie.

[12]  L. T. Scott,et al.  Strategien zur Synthese kurzer Abschnitte von Kohlenstoff‐Nanoröhren , 2009 .

[13]  D. Djurado,et al.  Ferromagnetic spins interaction in tetraaza- and hexaazacyclophanes. , 2009, Physical chemistry chemical physics : PCCP.

[14]  Yasukazu Hirao,et al.  Trimacrocyclic arylamine and its polycationic states. , 2008, Chemical communications.

[15]  Yasukazu Hirao,et al.  An N-substituted aza[14]metacyclophane tetracation: a spin-quintet tetraradical with four para-phenylenediamine-based semi-quinone moieties. , 2008, Chemical communications.

[16]  R. Tamura,et al.  Azacalix[4]arene cation radicals: spin-delocalised doublet- and triplet-ground states observed in the macrocyclic m-phenylene system connected with nitrogen atoms. , 2008, Chemical communications.

[17]  T. Takui,et al.  Macrocyclic high-spin (S=2) molecule: spin identification of a sterically rigid metacyclophane-based nitroxide tetraradical by two-dimensional electron spin transient nutation spectroscopy. , 2008, Angewandte Chemie.

[18]  R. Gleiter,et al.  Synthesis of [6.8]3cyclacene: conjugated belt and model for an unusual type of carbon nanotube. , 2008, Journal of the American Chemical Society.

[19]  M. Stuparu,et al.  Towards a fully conjugated, double-stranded cycle: a mass spectrometric and theoretical study. , 2008, Chemistry.

[20]  A. Rajca,et al.  Synthesis, structure, and conformation of aza[1n]metacyclophanes. , 2008, The Journal of organic chemistry.

[21]  R. Bushby,et al.  Disjoint and coextensive amminium radical cations : a general problem in making amminium radical cation based high-spin polymers , 2007 .

[22]  Yasukazu Hirao,et al.  Intramolecular charge transfer in a star-shaped oligoarylamine. , 2007, The journal of physical chemistry. A.

[23]  A. Rajca,et al.  Exchange coupling mediated through-bonds and through-space in conformationally constrained polyradical scaffolds: calix[4]arene nitroxide tetraradicals and diradical. , 2006, Journal of the American Chemical Society.

[24]  T. Goodson,et al.  Polaron delocalization in ladder macromolecular systems. , 2005, Journal of the American Chemical Society.

[25]  Jürgen Popp,et al.  How delocalized is N,N,N',N'-tetraphenylphenylenediamine radical cation? An experimental and theoretical study on the electronic and molecular structure. , 2004, Journal of the American Chemical Society.

[26]  Rudolf J. Vermeij,et al.  Nonplanar Aromatic Compounds. 6. [2]Paracyclo[2](2,7)pyrenophane. A Novel Strained Cyclophane and a First Step on the Road to a “Vögtle” Belt† , 2001 .

[27]  J. Walton,et al.  Tetrahedron Report Number 541 Conceptual and Synthetic Strategies for the Preparation of Organic Magnets , 2000 .

[28]  Kazuyoshi Tanaka,et al.  The Tetraaza[1.1.1.1]m,p,m,p‐cyclophane Dication: A Triplet Diradical Having Two m‐Phenylenediamine Radical Cations Linked by Twisted Benzenes , 2000 .

[29]  J. Hartwig,et al.  Tetraazacyclophanes by Palladium-Catalyzed Aromatic Amination. Geometrically Defined, Stable, High-Spin Diradicals , 1999 .

[30]  S. C. Blackstock,et al.  Macrocyclic Poly Arylamines for Rigid Connection of Poly Radical Cation Spins , 1999 .

[31]  Kazuyoshi Tanaka,et al.  N-Methyl-Substituted Aza[1(n)()]metacyclophane: Preparation, Structure, and Properties. , 1999, The Journal of organic chemistry.

[32]  F. Vögtle,et al.  LINEAR AND MACROCYCLIC MOLECULAR THREAD, RIBBON AND BELT ASSEMBLIES OF NANOMETRIC SCALE , 1999 .

[33]  John P. Wolfe,et al.  Rational Development of Practical Catalysts for Aromatic Carbon−Nitrogen Bond Formation , 1998 .

[34]  J. Hartwig Carbon−Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides , 1998 .

[35]  J. Hartwig Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. , 1998, Angewandte Chemie.

[36]  John F. Hartwig Übergangsmetall‐katalysierte Synthese von Arylaminen und Arylethern aus Arylhalogeniden und ‐triflaten: Anwendungen und Reaktionsmechanismus , 1998 .

[37]  K. Itoh,et al.  Polycationic High-Spin States of One- and Two-Dimensional (Diarylamino)benzenes, Prototypical Model Units for Purely Organic Ferromagnetic Metals As Studied by Pulsed ESR/Electron Spin Transient Nutation Spectroscopy , 1997 .

[38]  R. Janssen,et al.  High-Spin Cation Radicals of Meta−Para Aniline Oligomers , 1997 .

[39]  J. Benkhoff,et al.  Synthesis of sterically rigid macrocycles by the use of pressure-induced repetitive Diels-Alder reactions. , 1997 .

[40]  S. C. Blackstock,et al.  Isolable Polyradical Cations of Polyphenylenediamines with Populated High-Spin States. , 1997, The Journal of organic chemistry.

[41]  S. Kammermeier,et al.  Ring‐Expanding Metathesis of Tetradehydro‐anthracene—Synthesis and Structure of a Tubelike, Fully Conjugated Hydrocarbon , 1996 .

[42]  T. Kawase,et al.  Cyclic [6]- and [8]Paraphenylacetylenes† , 1996 .

[43]  M. Oda,et al.  Cyclisches [6]‐ und [8]Paraphenylacetylen** , 1996 .

[44]  P. G. Jones,et al.  Ringerweiterungsmetathese von Tetradehydrodianthracen – Synthese und Struktur eines röhrenförmigen, vollständig durchkonjugierten Kohlenwasserstoffs† , 1996 .

[45]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[46]  R. M. Cory,et al.  Transformations of a macrocyclic cyclophane belt into advanced [8]cyclacene and [8]cyclacene triquinone precursors , 1996 .

[47]  K. Müller,et al.  Synthesis of Belt Cyclophanes , 1995 .

[48]  K. Müller,et al.  Synthese von Gürtelcyclophanen , 1995 .

[49]  K. Matsuda,et al.  Design, Synthesis, and Characterization of Three Kinds of .pi.-Cross-Conjugated Hexacarbenes with High-Spin (S = 6) Ground States , 1995 .

[50]  R. Gleiter,et al.  Novel “π‐Boat” Cage Compounds as Potential Cryptands , 1995 .

[51]  R. Gleiter,et al.  Neuartige „π‐Boot”︁‐Käfigverbindungen als potentielle Cryptanden , 1995 .

[52]  Keith B. Oldham,et al.  Curve fitting to resolve overlapping voltammetric peaks: model and examples , 1995 .

[53]  S. C. Blackstock,et al.  Triplet Dication and Quartet Trication of a Triaminobenzene , 1994 .

[54]  A. Rajca,et al.  Organic Diradicals and Polyradicals: From Spin Coupling to Magnetism? , 1994 .

[55]  K. Yoshizawa,et al.  ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene , 1992 .

[56]  H. Iwamura High-Spin Organic Molecules and Spin Alignment in Organic Molecular Assemblies , 1991 .

[57]  F. Vögtle,et al.  Synthesestrategie für rohrförmige Moleküle , 1991 .

[58]  F. Vögtle,et al.  Strategy for the Synthesis of Tube‐Shaped Molecules , 1991 .

[59]  D. Dougherty Spin Control in Organic Molecules , 1991 .

[60]  A. Astashkin,et al.  Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra , 1990 .

[61]  Norris,et al.  Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity. , 1990, Physical review. B, Condensed matter.

[62]  David J. Williams,et al.  Towards the Making of [12]Collarene , 1988 .

[63]  David J. Williams,et al.  Auf dem Weg zu [12]Collaren , 1988 .

[64]  David J. Williams,et al.  Gürtel‐ und Kragenmoleküle: Ein Hexaepoxyoctacosahydro[12]cyclacen , 1987 .

[65]  J. F. Stoddart,et al.  Molecular Belts and Collars in the Making: A Hexaepoxyoctacosahydro[12]cyclacene Derivative , 1987 .

[66]  B. Eaton,et al.  [26](1,2,4,5)Cyclophane (deltaphane) and related compounds. Simultaneous .pi.-electron interaction among three benzene rings , 1985 .

[67]  B. Badger,et al.  The naphthalene dimer cation, (C10H8)2+ , 1967 .

[68]  R. Bushby,et al.  Disjoint and coextensive diradical diions , 1997 .

[69]  R. Bushby,et al.  Coulombic effects in radical-cation-based high-spin polymers , 1996 .

[70]  A. Rajca,et al.  Macrocyclic .pi.-Conjugated Carbopolyanions and Polyradicals Based upon Calix[4]arene and Calix[3]arene Rings , 1995 .

[71]  F. Mo,et al.  PHENYLIODINE(III) BIS(TRIFLUOROACETATE) AS A RADICAL CATION GENERATING REAGENT , 1995 .

[72]  J. Heinzer Fast computation of exchange-broadened isotropic E.S.R. spectra , 1971 .

[73]  A. Ishitani,et al.  Electronic absorption and E.S.R. spectra of the benzene and paracyclophane anions , 1967 .

[74]  N. P. Buu‐Hoï 831. The scope of the knoevenagel synthesis of aromatic secondary amines , 1952 .