Li2TiO3–LaSrCoFeO3 semiconductor heterostructure for low temperature ceramic fuel cell electrolyte

[1]  S. Shadizadeh,et al.  Effects of synthesized nanoparticles and Henna-Tragacanth solutions on oil/water interfacial tension: Nanofluids stability considerations , 2020 .

[2]  M. Fattahi,et al.  Developing the Ternary ZnO Doped MoS2 Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline , 2020, Scientific Reports.

[3]  Di Liu,et al.  Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor , 2019 .

[4]  B. Zhu,et al.  Processing SCNT(SrCo0.8Nb0.1Ta0.1O3-δ)-SCDC(Ce0.8Sm0.05Ca0.15O2-δ) composite into semiconductor-ionic membrane fuel cell (SIMFC) to operate below 500 °C , 2019, International Journal of Hydrogen Energy.

[5]  B. Zhu,et al.  The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells , 2019, International Journal of Hydrogen Energy.

[6]  T. Reina,et al.  Understanding the thermochemical behavior of La0.6Sr0.4Co0.2Fe0.8O3 and Ce0.9Gd0.1O_Co oxygen transport membranes under real oxy-combustion process conditions , 2019, Solid State Ionics.

[7]  Y. Wu,et al.  Intrinsic and extrinsic natures make changes on the ionic transportation - Response to: “Comments on Int J Hydrogen Energy 42 (2017) 17495–17503” , 2019, International Journal of Hydrogen Energy.

[8]  B. Zhu,et al.  Tuning the Energy Band Structure at Interfaces of the SrFe0.75Ti0.25O3-δ-Sm0.25Ce0.75O2-δ Heterostructure for Fast Ionic Transport. , 2019, ACS applied materials & interfaces.

[9]  Y. Wu,et al.  Proton Shuttles in CeO2/CeO2−δ Core–Shell Structure , 2019, ACS Energy Letters.

[10]  B. Zhu,et al.  Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells , 2019, NPG Asia Materials.

[11]  B. Zhu,et al.  Semiconductor TiO2 thin film as an electrolyte for fuel cells , 2019, Journal of Materials Chemistry A.

[12]  Wei Zhang,et al.  Novel high ionic conductivity electrolyte membrane based on semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for low-temperature solid oxide fuel cells , 2019, Journal of Power Sources.

[13]  Gang Chen,et al.  Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells , 2019, Nature Communications.

[14]  Kai Yu,et al.  Advanced Fuel Cell Based on New Nanocrystalline Structure Gd0.1Ce0.9O2 Electrolyte. , 2019, ACS applied materials & interfaces.

[15]  M. Fattahi,et al.  Experimental investigation and rheological behaviors of water-based drilling mud contained starch-ZnO nanofluids through response surface methodology , 2019, Journal of Molecular Liquids.

[16]  B. Zhu,et al.  Ionic Conducting Properties and Fuel Cell Performance Developed by Band Structures , 2019, The Journal of Physical Chemistry C.

[17]  Wei Zhang,et al.  Advanced Fuel Cell Based on Perovskite La-SrTiO3 Semiconductor as the Electrolyte with Superoxide-Ion Conduction. , 2018, ACS applied materials & interfaces.

[18]  B. Zhu,et al.  High-performance SOFC based on a novel semiconductor-ionic SrFeO3-δ–Ce0.8Sm0.2O2-δ membrane , 2018, International Journal of Hydrogen Energy.

[19]  Jing Zhang,et al.  Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells , 2018, International Journal of Hydrogen Energy.

[20]  Jinli Qiao,et al.  Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO , 2018, International Journal of Hydrogen Energy.

[21]  B. Zhu,et al.  Experimental and physical approaches on a novel semiconducting-ionic membrane fuel cell , 2018, International Journal of Hydrogen Energy.

[22]  Y. Wu,et al.  The composite electrolyte with an insulation Sm2O3 and semiconductor NiO for advanced fuel cells , 2018, International Journal of Hydrogen Energy.

[23]  P. Lund,et al.  Semiconductor‐ionic materials could play an important role in advanced fuel‐to‐electricity conversion , 2018, International Journal of Energy Research.

[24]  B. Zhu,et al.  Perovskite SrFe 1-x Ti x O 3-δ (x < = 0.1) cathode for low temperature solid oxide fuel cell , 2018, Ceramics International.

[25]  P. Lund,et al.  Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells , 2018 .

[26]  P. Lund,et al.  Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell , 2017 .

[27]  Ying Xie,et al.  Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries , 2017 .

[28]  B. Zhu,et al.  Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC) , 2016 .

[29]  M. Fattahi,et al.  Mathematical modeling and analytical solution of two-phase flow transport in an immobilized-cell photo bioreactor using the homotopy perturbation method (HPM) , 2016 .

[30]  Boyd W. Veal,et al.  Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures , 2016, Nature Communications.

[31]  M. Fattahi,et al.  Oxidation of H2S to Elemental Sulfur over Alumina Based Nanocatalysts: Synthesis and Physiochemical Evaluations , 2016 .

[32]  Hua Zhou,et al.  Strongly correlated perovskite fuel cells , 2016, Nature.

[33]  A. Muchtar,et al.  Influence of Binary Carbonate on the Physical and Chemical Properties of Composite Cathode for Low-Temperature SOFC , 2015 .

[34]  G. Marcì,et al.  La1−xSrxCo1−yFeyO3−d perovskites: Preparation, Characterization and Solar Photocatalytic Activity. , 2014 .

[35]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[36]  R. Lan,et al.  Novel Proton Conductors in the Layered Oxide Material LixlAl0.5Co0.5O2 , 2014 .

[37]  C. Ding,et al.  High performance anode-supported solid oxide fuel cell based on thin-film electrolyte and nanostructured cathode , 2010 .

[38]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[39]  J. Selman,et al.  Fabrication of YSZ electrolyte for intermediate temperature solid oxide fuel cell using electrostatic spray deposition: II – Cell performance , 2005 .

[40]  S. Kawi,et al.  Synthesis, characterization and sensing application of novel semiconductor oxides. , 1998, Talanta.

[41]  Peter Lund,et al.  Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle , 2016 .

[42]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[43]  B. Steele Interfacial reactions associated with ceramic ion transport membranes , 1995 .