Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a 'click'-type interfacial reaction.

[1]  Jiang Chen,et al.  Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. , 2015, Colloids and surfaces. B, Biointerfaces.

[2]  Shifang Luan,et al.  Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with anti-infection and tissue integration bifunctions. , 2014, ACS applied materials & interfaces.

[3]  Zhiqiang Wang,et al.  Supramolecular polymerization at the interface: layer-by-layer assembly driven by host-enhanced π-π interaction. , 2014, Chemical communications.

[4]  Jiao Ma,et al.  Enhanced biocompatibility of biostable poly(styrene-b-isobutylene-b-styrene) elastomer via poly(dopamine)-assisted chitosan/hyaluronic acid immobilization , 2014 .

[5]  E. Mendoza,et al.  Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach. , 2014, ACS applied materials & interfaces.

[6]  Hui Yang,et al.  Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. , 2014, Accounts of chemical research.

[7]  A. Sickmann,et al.  Antimicrobial poly(2-methyloxazoline)s with bioswitchable activity through satellite group modification. , 2014, Angewandte Chemie.

[8]  Shaoyi Jiang,et al.  Integrated antimicrobial and nonfouling zwitterionic polymers. , 2014, Angewandte Chemie.

[9]  Katsuhiko Ariga,et al.  Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution , 2014 .

[10]  Jinhong Jiang,et al.  Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). , 2013, ACS applied materials & interfaces.

[11]  F. Ran,et al.  Direct synthesis of heparin-like poly(ether sulfone) polymer and its blood compatibility. , 2013, Acta biomaterialia.

[12]  Shengfu Chen,et al.  Development of nonstick and drug-loaded wound dressing based on the hydrolytic hydrophobic poly(carboxybetaine) ester analogue. , 2013, ACS applied materials & interfaces.

[13]  Kieron M. G. O'Connell,et al.  Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. , 2013, Angewandte Chemie.

[14]  D. M. Lynn,et al.  Restoration of Superhydrophobicity in Crushed Polymer Films by Treatment with Water: Self‐Healing and Recovery of Damaged Topographic Features Aided by an Unlikely Source , 2013, Advanced materials.

[15]  Haiyan Wu,et al.  Switchable Antimicrobial and Antifouling Hydrogels with Enhanced Mechanical Properties , 2013, Advanced healthcare materials.

[16]  Shifang Luan,et al.  Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface. , 2013, ACS applied materials & interfaces.

[17]  Xuefeng Guo,et al.  Unique role of self-assembled monolayers in carbon nanomaterial-based field-effect transistors. , 2013, Small.

[18]  X. Ren,et al.  Antimicrobial N-halamine modified chitosan films. , 2013, Carbohydrate polymers.

[19]  Anuradha Singh,et al.  Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. , 2013, Biomacromolecules.

[20]  J. Hedrick,et al.  Antimicrobial and Antifouling Hydrogels Formed In Situ from Polycarbonate and Poly(ethylene glycol) via Michael Addition , 2012, Advanced materials.

[21]  Shaoyi Jiang,et al.  Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. , 2012, Biomaterials.

[22]  D. M. Lynn,et al.  Chemical Patterning and Physical Refinement of Reactive Superhydrophobic Surfaces , 2012, Advanced materials.

[23]  Hiroshi Ito,et al.  Molecular recognition: from solution science to nano/materials technology. , 2012, Chemical Society reviews.

[24]  Lingyun Liu,et al.  Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. , 2012, Biomacromolecules.

[25]  Shifang Luan,et al.  Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. , 2012, Colloids and surfaces. B, Biointerfaces.

[26]  B. Rieger,et al.  Surface-initiated group transfer polymerization mediated by rare earth metal catalysts. , 2012, Journal of the American Chemical Society.

[27]  S. Kiatkamjornwong,et al.  Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. , 2012, Colloids and surfaces. B, Biointerfaces.

[28]  Anuradha Singh,et al.  Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. , 2012, Biomacromolecules.

[29]  W. Tsai,et al.  Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. , 2011, Biomacromolecules.

[30]  P. Messersmith,et al.  Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. , 2011, ACS applied materials & interfaces.

[31]  K. Ariga,et al.  Layer-by-layer self-assembled shells for drug delivery. , 2011, Advanced drug delivery reviews.

[32]  Samira M. Azarin,et al.  Fabrication and selective functionalization of amine-reactive polymer multilayers on topographically patterned microwell cell culture arrays. , 2011, Biomacromolecules.

[33]  Ravi S Kane,et al.  Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms , 2011, Advanced materials.

[34]  Victor S-Y Lin,et al.  Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. , 2011, ACS nano.

[35]  C. M. Li,et al.  A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. , 2011, Nature materials.

[36]  M. Textor,et al.  The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. , 2010, Biomaterials.

[37]  M. Másson,et al.  Antibacterial activity of N-quaternary chitosan derivatives: Synthesis, characterization and structure activity relationship (SAR) investigations , 2010 .

[38]  B. Sreedhar,et al.  Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. , 2010, Colloids and surfaces. B, Biointerfaces.

[39]  C. Pillai,et al.  Chitin and chitosan polymers: Chemistry, solubility and fiber formation , 2009 .

[40]  M. E. Buck,et al.  Chemical modification of reactive multilayered films fabricated from poly(2-alkenyl azlactone)s: design of surfaces that prevent or promote mammalian cell adhesion and bacterial biofilm growth. , 2009, Biomacromolecules.

[41]  Bradley S. Lokitz,et al.  Highly Tailorable Materials based on 2-Vinyl-4,4-dimethyl Azlactone: (Co)Polymerization, Synthetic Manipulation and Characterization , 2009 .

[42]  M. Urban,et al.  Tunable antimicrobial polypropylene surfaces: simultaneous attachment of penicillin (Gram +) and gentamicin (Gram -). , 2009, Biomacromolecules.

[43]  Shaoyi Jiang,et al.  A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. , 2008, Angewandte Chemie.

[44]  S. Moochhala,et al.  Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. , 2008, Biomaterials.

[45]  G. Guebitz,et al.  Laccase-induced grafting on plasma-pretreated polypropylene. , 2008, Biomacromolecules.

[46]  M. E. Buck,et al.  Layer‐by‐Layer Assembly of Reactive Ultrathin Films Mediated by Click‐Type Reactions of Poly(2‐Alkenyl Azlactone)s , 2007 .

[47]  J. Nolan,et al.  A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. , 2006, Trends in parasitology.

[48]  C. Byrne,et al.  Effects of VLDL and Remnant Particles on Platelets , 2006, Pathophysiology of Haemostasis and Thrombosis.

[49]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[50]  S. Pértega,et al.  Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[51]  A. Albertsson,et al.  Single-step covalent functionalization of polylactide surfaces. , 2005, Journal of the American Chemical Society.

[52]  Eugene Khor,et al.  Implantable applications of chitin and chitosan. , 2003, Biomaterials.

[53]  H. Duan,et al.  Synthesis of amphiphilic block–graft copolymers [poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly(acrylic acid)] and their aggregation in water , 2002 .

[54]  S. Heilmann,et al.  Chemistry and technology of 2‐alkenyl azlactones , 2001 .

[55]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[56]  Jinhua Li,et al.  Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface. , 2014, Colloids and surfaces. B, Biointerfaces.

[57]  Katsuhiko Ariga,et al.  Evolution of molecular machines: from solution to soft matter interface , 2012 .

[58]  M. E. Buck,et al.  Azlactone-Functionalized Polymers as Reactive Platforms for the Design of Advanced Materials: Progress in the Last Ten Years. , 2012, Polymer chemistry.