Optimal-order nonnested multigrid methods for solving finite element equations III: on degenerate meshes

In this paper, we consider several model problems where finite element triangular meshes with arbitrarily small angles (high aspect ratios) are utilized to deal with anisotropy, interfaces, or singular perturbations. The constant-rate (independent of the number of unknowns, the smallest angle, the interface discontinuity, the singular-perturbation parameter, etc.) convergence of some special nonnested multigrid methods for solving the finite element systems on such degenerate meshes will be proved. Numerical data are provided to support the analysis in each case

[1]  I. Babuska,et al.  Finite Element Methods for the Solution of Problems with Rough Input Data. , 1985 .

[2]  Randolph E. Bank,et al.  A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .

[3]  Jan Mandel,et al.  Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step , 1986 .

[4]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[5]  L. Wahlbin,et al.  On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .

[6]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[7]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[8]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[9]  R. Verfürth The contraction number of a multigrid method with mesh ratio 2 for solving Poisson's equation , 1984 .

[10]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[11]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[12]  D. Braess The contraction number of a multigrid method for solving the Poisson equation , 1981 .

[13]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[14]  Wolfgang Hackbusch,et al.  Multigrid convergence for a singular perturbation problem , 1984 .

[15]  G. Lube Uniform in $\varepsilon $ discretization error estimates for convection dominated convection-diffusion problems , 1988 .

[16]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[17]  Shangyou Zhang Optimal-order nonnested multigrid methods for solving finite element equations. I. On quasi-uniform meshes , 1990 .

[18]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .