A miniaturized and flexible optoelectronic sensing system for tactile skin

This paper describes the development of a hybrid sensing module consisting of a general purpose electro-optical converter and three MEMS force sensors integrated into flexible substrates for tactile skin applications. The features of the converter, namely its flexible and thin substrate and small dimensions, programmability, optical coding and transmission of the information allow this versatile device to host different sensors, locally preprocess signals, translate this diverse information into a 'common language', and transmit it in a parallel, efficient and robust way to the processing unit. After discussing the major technical requirements, the design of the sensing, electrical and optical subsystems is illustrated, as well as the whole process for the module fabrication. A first characterization of a working prototype, hosting three MEMS force sensors and nine independent optical channels was performed. The global performance in terms of sensitivity, bandwidth and spatial sensing resolution make the presented module suitable to be used as basic element of a complete tactile system, conceived for robotic grasping and manipulation. Several solutions for mass production, improved optical properties and more efficient optical transmission are discussed.

[1]  Hong Zhang,et al.  Hybrid resistive tactile sensing , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[2]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[3]  M.C. Carrozza,et al.  Optoelectronic-Based Flexible Contact Sensor for Prosthetic Hand Application , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[4]  O. Tohyama,et al.  Fiber-optic tactile microsensor for detecting the position of the tip of a fiberscope , 1999 .

[5]  H. Maekawa,et al.  A finger-shaped tactile sensor using an optical waveguide , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[6]  Tamás Roska,et al.  Towards the visual microprocessor : VLSI design and the use of cellular neural network universal machines , 2000 .

[7]  Allison M. Okamura,et al.  Feature Detection for Haptic Exploration with Robotic Fingers , 2001, Int. J. Robotics Res..

[8]  Robert D. Howe,et al.  Tactile sensing and control of robotic manipulation , 1993, Adv. Robotics.

[9]  V. Lumelsky,et al.  Sensitive skin , 2000, IEEE Sensors Journal.

[10]  Hiroyuki Shinoda,et al.  Wireless tactile sensing element using stress-sensitive resonator , 2000 .

[11]  Maria Chiara Carrozza,et al.  A Human-like Robotic Manipulation System Implementing Human Models of Sensory-Motor Coordination , 2002 .

[12]  Heinz Wörn,et al.  Development of a flexible tactile sensor system for a humanoid robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Kenneth C. Smith,et al.  Distributed-force recovery for a planar photoelastic tactile sensor , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.

[14]  R. Johansson,et al.  Predictive feed-forward sensory control during grasping and manipulation in man , 1993 .

[15]  Ángel Rodríguez-Vázquez,et al.  ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  J. Engel,et al.  Polymer micromachined multimodal tactile sensors , 2005 .

[17]  V. Maheshwari,et al.  High-Resolution Thin-Film Device to Sense Texture by Touch , 2006, Science.

[18]  M. Shimojo,et al.  A system for simultaneously measuring grasping posture and pressure distribution , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Lucia Beccai,et al.  Experimental Analysis of a Soft Compliant Tactile Microsensor to be Integrated in an Anthropomorphic Artificial Hand , 2006 .

[20]  Cynthia Breazeal,et al.  A "somatic alphabet" approach to "sensitive skin" , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S.C. Jacobsen,et al.  Design of tactile sensing systems for dextrous manipulators , 1988, IEEE Control Systems Magazine.

[23]  Shanglian Huang,et al.  Development of an integrated vacuum microelectronic tactile sensor array , 2003 .

[24]  Haruhisa Kawasaki,et al.  Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II , 2002 .

[25]  S. Roccella,et al.  Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task , 2008, Brain Research Bulletin.

[26]  Dominiek Reynaerts,et al.  Featureless classification of tactile contacts in a gripper using neural networks , 1996 .

[27]  K. Yanagisawa,et al.  Optical tactile sensor using surface-emitting laser , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[28]  Mark R. Cutkosky,et al.  Sensing skin acceleration for slip and texture perception , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[29]  Ronald S. Fearing,et al.  A surface micromachined microtactile sensor array , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[30]  Ping Li,et al.  An arbitrarily distributed tactile piezoelectric sensor array , 1998 .

[31]  Hans Odeberg,et al.  A tactile sensor data-processing system , 1995 .

[32]  Masahiro Ohka,et al.  An Experimental Optical Three-axis Tactile Sensor for Micro-Robots , 2005, Robotica.

[33]  N. Futai,et al.  A flexible micromachined planar spiral inductor for use as an artificial tactile mechanoreceptor , 2004 .

[34]  P. Dario,et al.  Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications , 2005 .

[35]  Hiroyuki Shinoda,et al.  A Sensitive Skin Using Wireless Tactile Sensing Elements , 2001 .

[36]  Stefan Begej,et al.  Planar and finger-shaped optical tactile sensors for robotic applications , 1988, IEEE J. Robotics Autom..

[37]  Biswanath Mukherjee,et al.  WDM optical communication networks: progress and challenges , 2000, IEEE Journal on Selected Areas in Communications.

[38]  Yasutoshi Makino,et al.  A Whole Body Artificial Skin Based on Cell-Bridge Networking System , 2006 .

[39]  Mark Lee,et al.  Review Article Tactile sensing for mechatronics—a state of the art survey , 1999 .

[40]  Paolo Dario,et al.  Bio-inspired grasp control in a robotic hand with massive sensorial input , 2009, Biological Cybernetics.

[41]  Minoru Asada,et al.  Anthropomorphic robotic soft fingertip with randomly distributed receptors , 2006, Robotics Auton. Syst..

[42]  Yong Xu,et al.  IC-integrated flexible shear-stress sensor skin , 2003 .

[43]  Kinya Inamura,et al.  Dynamic tactile information sensing for dextrous fingers utilizing displacement parameters of a suspension shell , 1994, Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems.

[44]  Hisashi Osumi,et al.  Dynamic contact sensing of soft planar fingers with tactile sensors , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[45]  M. Nilsson,et al.  Tactile sensors and other distributed sensors with minimal wiring complexity , 2000 .

[46]  Hiroyuki Shinoda,et al.  Digital tactile sensing elements communicating through conductive skin layers , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[47]  G. W. Neudeck,et al.  Optical fibre microbending sensors by micromachining techniques , 1990 .