A robust optimization approach to supply chains and revenue management

The contribution of this thesis is to provide a tractable framework for supply chains and revenue management problems subject to uncertainty that gives insight into the structure of the optimal policy and requires little knowledge of the underlying probability distributions. Instead, we build upon recent advances in the field of robust optimization to develop models of uncertainty that make few probabilistic assumptions and have an adjustable level of conservatism to ensure performance. Specifically, we consider two classes of robust optimization approaches. First, we model the random variables as uncertain parameters belonging to a polyhedral uncertainty set, and optimize the system against the worst-case value of the uncertainty in the set. The polyhedron is affected by budgets of uncertainty, which reflect a trade-off between robustness and optimality. We apply this framework to supply chain management, show that the robust problem is equivalent to a deterministic problem with modified parameters, and derive the main properties of the optimal policy. We also explore a second approach, which builds directly on the historical realizations of uncertainty, without requiring any estimation. In that model, a fraction of the best cases are removed to ensure robustness, and the system is optimized over the sample average of the remaining data. This leads to tractable mathematical programming problems. We apply this framework to revenue management problems, and show that in many cases, the optimal policy simply involves an appropriate ranking of the historical data. Robust optimization emerges as a promising methodology to address a wide range of management problems subject to uncertainty, in particular in a dynamic setting, as it leads to representations of randomness that make few assumptions on the underlying probabilities, remain numerically tractable, incorporate the decision-maker’s risk aversion, and provides theoretical insights into the structure of the optimal policy. Thesis Supervisor: Dimitris J. Bertsimas Title: Boeing Professor of Operations Research

[1]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[2]  Allen J. Scott,et al.  Applications of Queueing Theory , 1972 .

[3]  G. Ryzin,et al.  Revenue Management Without Forecasting or Optimization: An Adaptive Algorithm for Determining Airline Seat Protection Levels , 2000 .

[4]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[5]  Jeffrey I. McGill,et al.  Revenue Management: Research Overview and Prospects , 1999, Transp. Sci..

[6]  UniversityJennifer K. RyanSchool Minimax Analysis for Finite Horizon Inventory Models , 2001 .

[7]  Alexander Shapiro,et al.  A simulation-based approach to two-stage stochastic programming with recourse , 1998, Math. Program..

[8]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Supply Chain Management , 2004, IPCO.

[9]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[10]  Hong Chen,et al.  Discrete Flow Networks: Bottleneck Analysis and Fluid Approximations , 1991, Math. Oper. Res..

[11]  K. Talluri,et al.  An Analysis of Bid-Price Controls for Network Revenue Management , 1998 .

[12]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[13]  Michael J. Ricard Optimization of queueing networks : an optimal control appraoch , 1995 .

[14]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[15]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[16]  Ioana Popescu Applications of optimization in probability, finance and revenue management , 1999 .

[17]  A. F. Veinott,et al.  Computing Optimal (s, S) Inventory Policies , 1965 .

[18]  S. Vaida,et al.  Studies in the Mathematical Theory of Inventory and Production , 1958 .

[19]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[20]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[21]  K W Wang OPTIMUM SEAT ALLOCATION FOR MULTI-LEG FLIGHTS WITH MULTIPLE FARE TYPES , 1983 .

[22]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[23]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[24]  Xin Chen,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case , 2004, Oper. Res..

[25]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[26]  Peter Paul Belobaba,et al.  Air travel demand and airline seat inventory management , 1987 .

[27]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[28]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[29]  Laurent El Ghaoui,et al.  Robustness in Markov Decision Problems with Uncertain Transition Matrices , 2003, NIPS.

[30]  Jeffrey I. McGill,et al.  Allocation of Airline Seats between Stochastically Dependent Demands , 1990, Transp. Sci..

[31]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[32]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[33]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[34]  G. Gallego,et al.  Distribution Free Procedures for Some Inventory Models , 1994 .

[35]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[36]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[37]  L. Eeckhoudt,et al.  The Risk-Averse and Prudent Newsboy , 1995 .

[38]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[39]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[40]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[41]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .

[42]  P. Krokhmal,et al.  Portfolio optimization with conditional value-at-risk objective and constraints , 2001 .

[43]  Ioana Popescu,et al.  Revenue Management in a Dynamic Network Environment , 2003, Transp. Sci..

[44]  Hon-Shiang Lau The Newsboy Problem under Alternative Optimization Objectives , 1980 .

[45]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[46]  A. Lo Semi-parametric upper bounds for option prices and expected payoffs , 1987 .

[47]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[48]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[49]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[50]  Haim Levy,et al.  Ordering Uncertain Options with Borrowing and Lending , 1978 .

[51]  D. Bertsekas Control of uncertain systems with a set-membership description of the uncertainty , 1971 .

[52]  F. Glover,et al.  The Passenger-Mix Problem in the Scheduled Airlines , 1982 .

[53]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[54]  P. Schweitzer,et al.  Generalized polynomial approximations in Markovian decision processes , 1985 .

[55]  G. Dai A Fluid-limit Model Criterion for Instability of Multiclass Queueing Networks , 1996 .

[56]  Rina Dechter,et al.  The optimality of A , 1988 .

[57]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[58]  Jr. Arthur F. Veinott On the Opimality of $( {s,S} )$ Inventory Policies: New Conditions and a New Proof , 1966 .

[59]  D. Simchi-Levi,et al.  The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management , 1999 .

[60]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[61]  Jeffrey I. McGill,et al.  Airline Seat Allocation with Multiple Nested Fare Classes , 1993, Oper. Res..

[62]  Richard W. Cuthbertson,et al.  The Logic of Logistics: Theory, Algorithms and Applications for Logistics Management , 1998, J. Oper. Res. Soc..

[63]  Peter Kall,et al.  Stochastic Programming , 1995 .

[64]  D. Bertsimas,et al.  Shortfall as a risk measure: properties, optimization and applications , 2004 .

[65]  E. Anderson,et al.  Linear programming in infinite-dimensional spaces : theory and applications , 1987 .

[66]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[67]  Claudio Barbieri da Cunha,et al.  The logic of logistics: theory, algorithms and applications for logistics management , 1999 .

[68]  Richard D. Wollmer,et al.  An Airline Seat Management Model for a Single Leg Route When Lower Fare Classes Book First , 1992, Oper. Res..

[69]  K. Littlewood. Special Issue Papers: Forecasting and control of passenger bookings , 2005 .

[70]  Dessislava A. Pachamanova A robust optimization approach to finance , 2002 .