ApoE—functionalization of nanoparticles for targeted brain delivery—a feasible method for polyplexes?

[1]  Runhui Liu,et al.  Protein Corona Investigations of Polyplexes with Varying Hydrophobicity - from Method Development to in vitro Studies. , 2023, International journal of pharmaceutics.

[2]  O. Merkel,et al.  From Adsorption to Covalent Bonding: Apolipoprotein E Functionalization of Polymeric Nanoparticles for Drug Delivery Across the Blood–Brain Barrier , 2020, Advanced therapeutics.

[3]  Runhui Liu,et al.  The Impact of Nylon-3 Copolymer Composition on the Efficiency of siRNA Delivery to Glioblastoma Cells , 2019, Nanomaterials.

[4]  K. Bremmell,et al.  Interfacial analysis of siRNA complexes with poly-ethylenimine (PEI) or PAMAM dendrimers in gene delivery. , 2017, Colloids and surfaces. B, Biointerfaces.

[5]  Y. Kuo,et al.  Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. , 2017, International journal of pharmaceutics.

[6]  M. Gorshkova,et al.  Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. , 2017, International journal of pharmaceutics.

[7]  J. Kreuter,et al.  Potential of surfactant‐coated nanoparticles to improve brain delivery of arylsulfatase A , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[8]  M. F. Fernandes-Pedrosa,et al.  Cationic functionalized biocompatible polylactide nanoparticles for slow release of proteins , 2017 .

[9]  S. Jose,et al.  Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. , 2016, Colloids and surfaces. B, Biointerfaces.

[10]  S. Singh,et al.  A Comparative Study of Orally Delivered PBCA and ApoE Coupled BSA Nanoparticles for Brain Targeting of Sumatriptan Succinate in Therapeutic Management of Migraine , 2016, Pharmaceutical Research.

[11]  T. Kissel,et al.  Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). , 2016, Molecular pharmaceutics.

[12]  S. Gellman,et al.  Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery , 2014, Molecular pharmaceutics.

[13]  Sean P. Palecek,et al.  Structure–Activity Relationships among Antifungal Nylon-3 Polymers: Identification of Materials Active against Drug-Resistant Strains of Candida albicans , 2014, Journal of the American Chemical Society.

[14]  F. Movahedi,et al.  Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma , 2014, Tumor Biology.

[15]  Marina A Dobrovolskaia,et al.  Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[16]  J. Mönkkönen,et al.  ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. , 2012, International journal of pharmaceutics.

[17]  S. Gellman,et al.  Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces. , 2012, Biomacromolecules.

[18]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[19]  M. R. Kumar,et al.  Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[20]  C. Chou,et al.  Structural and functional characterization of human apolipoprotein E 72-166 peptides in both aqueous and lipid environments , 2011, Journal of Biomedical Science.

[21]  H. von Briesen,et al.  Nanoparticulate Transport of Oximes over an In Vitro Blood-Brain Barrier Model , 2010, PloS one.

[22]  J. Mönkkönen,et al.  ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. , 2010, Molecular pharmaceutics.

[23]  J. Kreuter,et al.  Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  T. Kissel,et al.  Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[25]  R. Alyautdin,et al.  Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles , 2009, Journal of drug targeting.

[26]  M. Samanta,et al.  Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  S. Seredenin,et al.  Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80 , 2008, Bulletin of Experimental Biology and Medicine.

[28]  Qingfei Liu,et al.  Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles , 2008, Archives of pharmacal research.

[29]  M. Samanta,et al.  Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease , 2008, Brain Research.

[30]  Suzie H Pun,et al.  Extracellular barriers to in Vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. , 2008, Bioconjugate chemistry.

[31]  S. Gellman,et al.  Mimicry of antimicrobial host-defense peptides by random copolymers. , 2007, Journal of the American Chemical Society.

[32]  T. Arendt,et al.  Comparison of results of the CellTiter Blue, the tetrazolium (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide), and the lactate dehydrogenase assay applied in brain cells after exposure to advanced glycation endproducts. , 2007, Toxicology in vitro : an international journal published in association with BIBRA.

[33]  J. Kreuter,et al.  Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[34]  M. Manoharan,et al.  RNAi therapeutics: a potential new class of pharmaceutical drugs , 2006, Nature chemical biology.

[35]  O. Boerman,et al.  INTRAVENOUSLY ADMINISTERED SHORT INTERFERING RNA ACCUMULATES IN THE KIDNEY AND SELECTIVELY SUPPRESSES GENE FUNCTION IN RENAL PROXIMAL TUBULES , 2006, Drug Metabolism and Disposition.

[36]  A. Aigner,et al.  RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. , 2006, Human gene therapy.

[37]  M. Michaelis,et al.  Covalent Linkage of Apolipoprotein E to Albumin Nanoparticles Strongly Enhances Drug Transport into the Brain , 2006, Journal of Pharmacology and Experimental Therapeutics.

[38]  J. Barciszewski,et al.  Suppression of human brain tumor with interference RNA specific for tenascin-C , 2006, Cancer biology & therapy.

[39]  M. Behlke Progress towards in Vivo Use of siRNAs , 2006, Molecular Therapy.

[40]  Xinguo Jiang,et al.  Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. , 2006, International journal of pharmaceutics.

[41]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[42]  J. Kreuter,et al.  Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model , 2006, Journal of microencapsulation.

[43]  S Moein Moghimi,et al.  A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[44]  J. Kreuter Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. , 2004, Journal of nanoscience and nanotechnology.

[45]  K. Geiger,et al.  Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles , 2004, International journal of cancer.

[46]  Z. Paroo,et al.  Biodistribution of phosphodiester and phosphorothioate siRNA. , 2004, Bioorganic & medicinal chemistry letters.

[47]  J. Ribalta,et al.  Apolipoprotein and apolipoprotein receptor genes, blood lipids and disease , 2003, Current opinion in clinical nutrition and metabolic care.

[48]  W. Pardridge Blood-brain barrier drug targeting: the future of brain drug development. , 2003, Molecular interventions.

[49]  Clive J Roberts,et al.  Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. , 2002, Bioconjugate chemistry.

[50]  Peter Ramge,et al.  Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier , 2002, Journal of drug targeting.

[51]  R. Löbenberg,et al.  Interaction of Poly(butylcyanoacrylate) Nanoparticles with the Blood-Brain Barrier in vivo and in vitro , 2001, Journal of drug targeting.

[52]  J. Drewe,et al.  Endocytosis and Transcytosis of an Immunoliposome-Based Brain Drug Delivery System , 2000, Journal of drug targeting.

[53]  M. Ogris,et al.  PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery , 1999, Gene Therapy.

[54]  B. Sabel,et al.  Nanoparticle technology for delivery of drugs across the blood-brain barrier. , 1998, Journal of pharmaceutical sciences.

[55]  F. Szoka,et al.  Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. , 1996, Biochemistry.

[56]  M. Brechbiel,et al.  Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. , 1992, Bioconjugate chemistry.

[57]  M. Dehouck,et al.  Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes , 1987, The Journal of cell biology.

[58]  K. Watanabe,et al.  A rapid flat gel isoelectric focusing method for the determination of apolipoprotein E phenotypes and its application. , 1985, Clinica chimica acta; international journal of clinical chemistry.

[59]  W. Pardridge The blood-brain barrier: Bottleneck in brain drug development , 2011, NeuroRX.

[60]  T. Kissel,et al.  In vivo SPECT and real-time gamma camera imaging of biodistribution and pharmacokinetics of siRNA delivery using an optimized radiolabeling and purification procedure. , 2009, Bioconjugate chemistry.

[61]  J. Coll,et al.  Side‐effects of a systemic injection of linear polyethylenimine–DNA complexes , 2002, The journal of gene medicine.

[62]  P. Ramge,et al.  Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles. , 1999, Chronobiology international.

[63]  D. A. Kharkevich,et al.  Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. , 1998, Journal of microencapsulation.

[64]  D. Hochstrasser,et al.  Colloidal carriers for intravenous drug targeting: Plasma protein adsorption patterns on surface‐modified latex particles evaluated by two‐dimensional polyacrylamide gel electrophoresis , 1993, Electrophoresis.

[65]  V. Neuhoff,et al.  Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G‐250 and R‐250 , 1988, Electrophoresis.