Differential diagnosis of spall versus cracks in the gear tooth fillet region

This paper presents a technique to differentially diagnose two localized gear tooth faults: a spall and a crack in the gear tooth fillet region. These faults could have very different prognoses, but existing diagnostic techniques only indicate the presence of local tooth faults without being able to differentiate between a spall and a crack.The effects of spalls and cracks on the behavior/response of gear assemblies were studied using static and dynamic simulation models. Changes in the kinematics of a pair of meshing gears due to a gear tooth root crack and a tooth flank spall were compared using a static analysis model. The difference in the variation of the transmission error caused by the two faults reveals their characteristics. The effect of a tooth crack depends on the change in stiffness of the tooth, while the effect of a spall is predominantly determined by the geometry of the fault.The effect of the faults on the gear dynamics was studied by simulating the transmission error in a lumped parameter dynamic model. A technique had previously been proposed to detect spalls, using the cepstrum to detect a negative echo in the signal (from entry into and exit from the spall). In the authors’ simulations, echoes were detected with both types of fault, but their different characteristics should allow differential diagnosis. These concepts are presented prior to experimental validation in hopes that the diagnostic techniques will be useful in the failure analysis community prior to the validation by ongoing experimental testing of the concepts and the evaluation of how metallurgical defects may influence fault development and detection.