Adaptive and Assortative Mating Scheme for Evolutionary Multi-Objective Algorithms

We are interested in the role of restricted mating schemes inthe context of evolutionary multi-objective algorithms. In this paper, wepropose an adaptive assortative mating scheme that uses similarity inthe decision space (genotypic assortative mating) and adapts the matingpressure as the search progresses. We show that this mechanism improvesthe performance of the simple evolutionary algorithm for multi-objective optimisation (SEAMO2) on the multiple knapsack problem.

[1]  James A. Foster,et al.  The 2003 Genetic and Evolutionary Computation Conference , 2003 .

[2]  Hisao Ishibuchi,et al.  Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization , 2004, GECCO.

[3]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[4]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[5]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[6]  Hisao Ishibuchi,et al.  An Empirical Study on the Effect of Mating Restriction on the Search Ability of EMO Algorithms , 2003, EMO.

[7]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[8]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[9]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[10]  ZitzlerE.,et al.  Multiobjective evolutionary algorithms , 1999 .

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Chien-Feng Huang An analysis of mate selection in genetic algorithms , 2001 .

[13]  Sankar K. Pal,et al.  Genotypic and Phenotypic Assortative Mating in Genetic Algorithm , 1998, Inf. Sci..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[16]  Christine L. Mumford Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.

[17]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[18]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[19]  Hisao Ishibuchi,et al.  Recombination of Similar Parents in EMO Algorithms , 2005, EMO.

[20]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[21]  Hisao Ishibuchi,et al.  A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization , 2003, GECCO.